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UNIQUE CAPABILITY DESCRIPTIONS 

ITEM 1.  Sub-elements Enable Diverse Equation Formats to become Categorized. 

Diverse Quadratic and Cubic equation formats actually can become 

categorized with respect to one another.  

Such formats become associated in terms of the following factors 

found to exist within intrinsic root sets and their inherent 

coefficient structures: 

• θtan  

• ζθ =)3tan(  

One specific example of an association between diverse Quadratic 

and Cubic Equation formats is provided below: 

• The Simplified Unified Cubic Trigonometric Reduction Equation (Ref. 
Equation 30) represents a Quadratic Equation whose principal unknown 

is tan θ; where )3tan( θξ =  exists as a factor contained within both its 

first and third term coefficients: 

0)1(tan]3[tan]3[ 2 =+−−−+ DDBDC ζθθζ  [Ref. Equation 30] 

• The Generalized Cubic Equation (Ref. Equation 32) exhibits tan θ as 
a factor inherent within all three of its root values zR, zS, and zT 

(see below); wherein ζ manifests itself as an Overall Equation 

Characteristic Value that readily can be determined via manipulation 

of Equation 32 coefficients in accordance with Equation 36, also 

designated below: 

0''' 23 =+++ δγβ zzz   [Ref. Equation 32, Sections 5.3 and 14.2] 

 

Such that,  

'1

''

γ
βδ

ζ
−

−
=  [Ref. Equation 36] 

Accordingly, for each value of ζ identified in any given 

Simplified Unified Cubic Trigonometric Reduction Equation, there 

exists an associated Generalized Cubic Equation which features 

identical tan θ and )3tan( θξ =  properties.  

Categorization becomes achieved because Equation Sub-elements, 

also deemed RST terminology: 

• Appear as respective factors serving to characterize 
Generalized Cubic Equation root set values zR, zS, and zT 

during specific circumstances when such equation’s coefficient 

α is set equal to unity as follows: 

023 =+++ δγβα zzz  Generalized Cubic Equation [Ref. Equation 32] 

023 =+++ δγβ zzz  

Where,  
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TT

SS

RR

θθ

θθ

θθ

tan tan Tz

tan tan Sz

tan tan Rz

==

==

==
 [Ref. Section 10] 

As indicated directly above, RST terminology 

furthermore relates the tangent of an angle θ to 

respective tangents of three root set characteristic 

angles, hereinafter denoted as θR, θS, and θT, the 

sum of which equals 3θ degrees as follows:  

θ3=θ+θ+θ TSR  [Ref. Section 10] 

Moreoever, such Generalized Cubic Equation format, as specified 

above, encompasses all coefficient numerical variations which 

could possibly be characterized by a Cubic format which consists 

of only a singular unknown; one which furthermore assumes the 

form of a polynomial comprised of cubic unknown and purely 

numeric terms, in mathematical combination with either quadratic 

and/or linear unknown supporting terms. 

Note: 

The Generalized Cubic Equation format exhibits limited scope 

only from the standpoint that it addresses a singular cubic 

unknown. 

As such, it does not accommodate multiple sets of cubic 

unknowns such as z1 and z2, where each is afforded its own 

distinct cubic root values.  An example of this type of 

complex cubic format is rendered below (Ref. Section 2.2): 

0
3

2

2

21

2

1

3

1 =+++ zzzzz δγβ  

• Permeate, or are embedded deep within the framework, or 
architecture of constituent algebraic equation coefficient 

structures.   

For example, the Simplified Unified Cubic Trigonometric 

Reduction Equation format (Ref. Equation 30) harbors RST 

Terminology within its inherent coefficients as follows:  

0)1(tan]3[tan]3[ 2 =+−−−+ DDBDC ζθθζ  [Ref. Equation 30] 

Such that, 

RSTD

STRTRSC

TSRB

−=

++=

++−= )(
 [Ref. Section 11.1]  

Such categorization is premised upon a Hierarchy Chart which 

eventually evolves into a Characteristic Cubic Equation Thruway 

System which are described as follows: 

1.1.  Hierarchy Chart. 

Equation Sub-element categorization begins with the 

assemblage of a hierarchy chart (Ref. Table 10) that traces 

paths of development of certain equations and their related 

functions.  It cites the exact source of each equation, and 

what specific type of format each represents consisting of 
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the following classifications: 

• Section 2. Fundamental Information  

• Section 3. Complex Quadratic Equations 

• Section 4. Complex Quadratic Functions 

• Section 5. Cubic Equations and Associated Functions 

Where, 

Complex Quadratic Equations express combinations of first and 

second order multiple unknown quantities such as ‘x1’, ‘x2’, 

etc. (Ref. Section 2.2).  Such appellation is meant to 

distinguish them from regular, or so-called normal Quadratic 

Equations which express first and second order combinations of 

just a singular unknown quantity; in this case, ‘x’. 

Complex Quadratic Equations allow for special monitoring of 

multiple unknowns where each can become individually 

interrogated.  This is similar to the manner in which partial 

differential equations may be used to identify specific values 

for typical thermodynamic properties such as pressure, volume, 

and density, by acting upon one variable at a time while 

ascribing distinct values to such other unknowns. 

Such concept also extends itself to Complex Linear Equations 

which consist of more than a singular unknown, but express such 

unknowns only as linear quantities. 
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1.2.  Characteristic Cubic Equation Thruway System. 

Below is a list of supporting fundamental transforms which 

all stem from a Unified Cubic Trigonometric Reduction 

Equation (Ref. Equation 29 and Sections 11):  

• The SUCTRE -- see above (Ref. Equation 30) 

• The Characteristic Cubic Equation (Ref. Equation 31) 

• The Generalized Cubic Equation (Ref. Equation 32) 

• The Expression for S and T (Ref. Equation 33) 

• The Expression for R and (S+T) (Ref. Equation 34) 

• The Cubic Restitution Equation  (Ref. Equation 35) 

• The ζ Relationship to GCE Coefficients (Ref. Equation 36) 

Of these, the Characteristic Cubic Equation (Ref. Equation 31) 

contains coefficients B, C, and D which are inextricably 

linked to the other transforms via RST Terminology, reiterated 

as follows: 

RSTD

STRTRSC

TSRB

−=

++=

++−= )(
 

Such B, C, and D coefficients perform as building blocks that 

can be associated to a patchwork of other aggregate equation 

assemblages. 

In a sense Equation 31 may be viewed as a crossroads which 

interconnects a plethora of other associated transforms by 

means of a so-called Characteristic Cubic Equation Thruway 

System (Ref. Section 12).  It embodies various strategically 

emplaced Quadratic and Cubic Equation Formats where travel 

between respective points occurs whenever one format becomes 

successfully transformed into an adjoining one (Ref. Table 

16).  The process is controlled by a rigid set of rules (Ref. 

Table 17), each of which is comprised of a sequence of 

calculations which need to be determined in order to remain in 

compliance. 

Such Thruway System may be compared favorably to the software 

and codes which led to the development of relational 

databases, now relied upon heavily in the field of computer 

science.  For purposes of introducing spreadsheets, such 

relational databases first assumed the form of System R in its 

infancy; but later evolved into SQL, Oracle, and Excel. 
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ITEM 2.  Sub-element Theory Proposes a Rationally-based Number Classification. 

All real numbers can be categorized either as rationally-based 

or cubic irrational, where (Ref. Section 9.1): 

Rationally-based numbers consist of: 

a. All rational numbers; and 

b. Quadratic irrational numbers such as 1025/73517  which are 

comprised of the magnitudes of all lengths which can be 

geometrically constructed from a given length of unity 

other than those which are of rational value.  When 

algebraically expressed, they must exhibit at least one 

square root radical sign.  However, quadratic irrational 

numbers cannot feature any radical sign which is a multiple 

of three, such as a cube root or even possibly an eighty-

first root, because such values cannot be determined by 

means of applying successive Quadratic Formulas that are 

permitted to operate only upon either rational numbers 

and/or quadratic equation root values, as might become 

determined by such method.  

Cubic irrational numbers consist of all other real numbers that 

cannot be classified as rationally-based. 

The rationally-based number classification should be viewed as a 

set of real numbers which includes all possible Euclidean 

determinations that can be geometrically constructed from a 

given, arbitrary length of unity. 

 

It collates a disparate assortment of rational and quadratic 

irrational lengths together, like 1025/73517 5)62/32(4 ++ , whose 

individual terms consist specifically of:  

1) Rational numbers -- defined as the quotient between two given 
integers, and portrayed as follows: 

12

1
1

x

a
x =

∆
=  

Where the mathematic division represented above identifies a  

length x1 that is determined via geometric construction 

performed in accordance with the Euclidean Mapping Process 

specified in Section 2.3 whose: 

• Lengths Δ and 2a, each representing integer values, are 

geometrically constructed via sole straightedge and 

compass using an arbitrary, assigned length of unity as a 

basis 

• Rational length x1 is identified as the horizontal offset 

measured from the right side of the rectangle to the 

point where the diagonal line intersects the horizontal 

line which exhibits a height of unity (Ref. Figure 2) 
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Hence, all rational numbers are Euclidean!  In other words, 

each and every one can be geometrically constructed from an 

arbitrary length which is to be designated as one unit in 

length via only a straightedge and compass; and 

2) Quadratic irrational numbers – represented as magnitudes of 
all lengths that can be geometrically constructed via 

Pythagorean Theorem either from solely rational lengths in 

concert with an infinite variety of mathematical combinations 

of other purely rational lengths, or from their results. 

Even after such rational values become transformed into 

irrational lengths via Pythagorean Theorem, it still remains 

possible to measure them, as well as to replicate them from a 

given, arbitrary length of unity.   

Mathematically, such geometric construction process is 

analogous to calculating respective root pair values x1 and 

x2 depicted below via Quadratic Formula that operates only 

upon sole rational (or rationally-based) coefficient values 

a, b, and c that are inherent to, or reside within the 

specific Quadratic Equation format 02 =++ cbxax : 

a

acbb
xx

2

4
;

2

21

−±−
=  

 

In conclusion: 

• Rationally-based numbers comprise all real numbers which can 

be geometrically constructed from a given, arbitrary length 

of unity 

• Cubic irrational numbers comprise all other real numbers; 

specifically, those which cannot be geometrically constructed 

from a given, arbitrary length of unity 
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ITEM 3.  Sub-element Theory Elucidates upon a Cubic Irrational Gateway  

Earlier, a case is made that rationally-based numbers cannot 

beget cubic irrational ones. 

In actuality, however, the reverse it true; whereby cubic 

irrational root sets can produce rationally-based results! 

What’s profound is that such gateway exists, not through 

quadratic roots and their associated equations, but only through 

cubic root sets where, yet again, the Generalized Cubic Equation 

takes center stage for the same reasons as mentioned earlier. 

Such assertion, once proven true, gives equation formats 

meaning; thereby, breathing new life into them. 

Specifically, the Generalized Cubic Equation format enables 

cubic irrational root set quantities to co-exist within a 

coefficient framework comprised solely of rationally-based 

numbers.  

This occurs through a mathematical gateway which becomes 

enabled by either calculating the product, summation, or 

summation of paired products of such aforementioned cubic 

irrational triads (Ref. Tables 13 through 15). 

Such gateway does not apply to Quadratic Equations of the 

reconstituted form 0c'xb'x
2 =++ , simply because they neither 

have the affinity, nor possess the capability to convert cubic 

irrational numbers into rationally-based values.   

This is demonstrated via the Quadratic Formula as shown below; 

wherein respective roots x1 and x2 clearly cannot be cubic 

irrational when coefficients b’ and c’ are rationally-based: 

2

'4''
;

2

21

cbb
xx

−±−
=   

The above analysis considers only Quadratic and Cubic 

Equations which express singular unknown variables.  Hence, 

it does not address Complex Quadratic and Cubic Equations. 
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3.1.  The Cubic Equation Uniqueness Theorem. 

 

The above account gives rise to the Cubic Equation 

Uniqueness Theorem (Ref. Section 9.3). As stated below, it 

applies exclusively to equation formats of singular 

unknown quantity such as:  

• The Generalized Cubic Equation Format 0'''''' 23 =+++ δγβ zzz  

• The Quadratic Equation Format 0c'xb'x
2 =++  

Only Cubic Equations allow solely rationally-based 

numerical coefficients to co-exist with root sets 

comprised of cubic irrational numbers. 

In other words, a unique capability to characterize cubic 

irrational roots in terms of solely rationally-based 

coefficients must be reserved only for Cubic Equation 

formats.   

Accordingly, cubic irrational roots apply to Cubic Equations 

which contain solely rationally-based coefficients, but not to 

Quadratic Equations whose coefficients also are solely 

rationally-based.   

Based upon this hypothesis, next consider the seemingly 

outlandish possibility that various equation formats might 

actually assume their very own form, or acquire their overall 

algebraic aspect, in order to account for the various types 

of rationally-based and cubic irrational number arrangements 

inherent within their very coefficient and root structures. 

To reiterate, such formats harbor distinctively different 

arrangements or combinations of such numerical 

representations that each contains.  

In this regard, Equation Sub-element Theory distinguishes 

between Quadratic and Cubic Equation formats and explains why 

diversity exists between them (Ref. Section 9).   

It contends that Cubic Equation formats pose a complete 

demarcation from their Linear and Quadratic Equation 

counterparts.  This is because they must exist as separate 

mathematical entities, independent or completely apart from 

Quadratic Equation formats, in order allow for a unique 

correlation between rationally-based coefficients and their 

associated cubic irrational root sets. 

3.2.  A Corollary to the Cubic Equation Uniqueness Theorem. 

A principal corollary to the Cubic Equation Uniqueness 

Theorem specifically states (Ref. Section 9.3): 

Cubic irrational root pairs which appear in 

Parabolic Equations or their associated functions 

require supporting cubic irrational coefficients. 
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3.3.  Rationale for a Cubic Irrational Mathematics Law. 

The complete demarcation between rationally-based numbers and 

cubic irrational numbers can be perceived mathematically. 

It appears, or becomes evident in various equation forms which 

very surprisingly are considered to be mathematically correct!   

This occurs when attempts are made to mathematically equate 

cubic irrational results on one side of an equation in terms of 

sole rationally-based values enlisted upon the other!  

When mathematical resolution cannot possibly be achieved, such 

equations instead manifest themselves as null sets; i.e. ones 

which appear to condone an infinite supply of values as being 

mathematically correct (Ref. Section 8). 

In reality, though, some values may turn out to be incorrect, 

but such equations really don’t understand this because 

constraints imposed by other equations haven’t yet been applied.  

Hence, such null set results really provide indication of an 

insufficient amount of information. 

One such example is shown below for the particular circumstance 

when it is desired to establish a second, independent 

Generalized Cubic Equation which can be used in conjunction with 

a given Generalized Cubic Equation, by virtue of its common root 

zR, in order to simultaneously resolve it. 

The first given Generalized Cubic Equation is of the following 

form: 

0''' 23 =+++ δγβ zzz   [Ref. Equation 32, and Section14.2] 

Given o603 =θ , 2=R , and 3=S :   

Values for ζ, tan θ and the associated roots are computed as 

follows:  

360tan)3tan( === oθζ  

363970234.020tan
3

60
tan)

3

3
tan(tan ==== o

oθ
θ  

o
S

o
S

o
R

o
R

51574349.47tan=θtan=091910703.1=02 tan 3=θ tan S=z
05238873.36tan=θtan=727940468.0=02 tan 2=θ tan R=z  

Such that: 

TSR

o θθθθ ++== 603  [Ref. Item 1 Capabilities] 

T

oo θ++= 51574349.4705238873.36  

T

ooo θ=+− )51574349.4705238873.36(60  

T

o θ=− 56813222.23  
o02 tan 198523992.1- tan T436227058.0ztan)56813222.23tan( =====− θθ TT

o
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)zz-(z' TSR ++=β  

31.38362411

234)8(0.3639703.80147600

022)tan1.198523993-(2 o

−=

−=

−+=
 

TSTSR zz)zz(z' ++=γ  

000977665.0

34)(0.363970200738004.0

20tan)]21.19852399(32)1.19852399(32[

)202tan1.19852399(20tan320tan2)1.19852399(320tan2

2

2

=

=

−−=

−−=
o

oooo

 

TSR zzz' −=δ  

346733327.0

34)(0.3639702191143952.7

202)tan1.19852399((3)2

)202tan1.19852399()20tan(320tan2

3

3

=

=

=

=
o

ooo

 

Check, 

'1

''

γ
βδ

ζ
−

−
=  [Ref. Equation 36] 

3

732050808.1

000977665.01

31.38362411346733327.0

=

=
−

+
=

 

 

Such second, independent Generalized Cubic Equation is to be 

structured as follows: 

'

'

''

45

1560

3

SR

o

o

SR

o

TSR

θθ

θθ

θθθθ

+=

++=

++=

 

)tan(45tan SR

o θθ +=  

'

'

1
1

SR

SR

zz

zz

−

+
=  

''1 SRSR zzzz +=−  

)1(1 ' RSR zzz +=−  

'
1

1
S

R

R z
z

z
=

+

−
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0'''''' 23 =+++ δγβ zzz   [Ref. Equation 32, and Section 14.2] 

Where,  

)zz-(z'' T'S'R ++=β  

)]51tan1(51tan[z
1

1
-

]51tan)1(1z[z
1

1
-

]51tan
)1(

1
-[z

oo2

R

o2

RR

o

R

+++
+

=

++−++
+

=

+
+

−
+=

R

R

RR

R

R

R

z
z

zz
z

z

z

 

)]51tan1(51tanz[)1('' oo2

R +++−=+ RR zzβ  

 
T'S'T'S'R zz)zz(z'' ++=γ  

]51tan)151tan([
1

1

]51)tan1(51)tan1([
1

1

51tan
1

1
)51tan

1

1
(z

oo2

oo2

oo

R

++−
+

=

−+++−
+

=

+

−
++

+

−
=

RR

R

RRRRR

R

R

R

R

R

zz
z

zzzzz
z

z

z

z

z

 

oo2
51tan)151tan()1('' ++−=+ RRR zzzγ  

T'S'R zzz'' −=δ  

o2

o

R

51)tan-(
1

1

51tan
1

1
z

RR

R

R

R

zz
z

z

z

+
−=

+

−
−=

 

o2
51)tan-()1('' RRR zzz =+− δ  

Such that, 

''1

''''

γ
βδ

ζ
−

−
=  [Ref. Equation 36] 

'''')''1( βδγζ −=−  

''''' ζγδβζ =−+  

 )1('')''')(1( RR zz +=−++ ζγδβζ  

]51tan)151tan([51)tan-()]51tan1(51tanz[)1(
oo2o2oo2

R ++−=++++−+ RRRRRR zzzzzz ζζ  

]51tan)151tan([51)tan-()]51tan1(51tanz[
oo2o2oo2

R +−=++++− RRRR zzzz ζζ  

 ]51tan)151tan([51)tan-()51tan1(51tanz
oo2o2oo2

R +−=++−−− RRRR zzzz ζζ  

]51tan)151tan([51tan-)51tan1(z
oo2o2o2

R +−=+−− RR zz ζζ  
oo2o2o

51tan)151tan()51tan(1-)51tan1( ζζζ +−=++− RR zz  

)51tan151tan(51tan)51tan1(
oo2oo ++−=−+− ζζζζ Rz  

Rz=
++−

−+−
oo

oo

51tan151tan

51tan)51tan1(

ζζ
ζζ  
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In addition, 

ζ
ζ

+

−
=−=

1

1
)4560tan(51tan o oo  

31

13

+

−
=  

As indicated above, )363970234.0(2 tan202 tan 2 tan Rz
o ==== θθR

, being a 

quantity which is two times that of tan 20o, is most definitely a 

cubic irrational number.   

However, very surprisingly, it is mathematically equated to the 

square root of a certain combination of completely rationally-

based numbers which, in turn, must constitute an overall 

rationally-based result! 

Being that the above math is considered to be correct, this is 

clearly impossible simply because a cubic irrational number 

cannot be set equal to a rationally-based result!  

This is explained by completing such equivalency as follows: 

Where, 

1)1(51tan

)1(51tan1
o

o

+−+

+−−
=

ζζ
ζζ

Rz  

NullSet=

=

−−−

−−−
=

+−+
+

−

+
+

−
−−

=

0

0

 1)()1(

)1()1(

 1)1)(
1

1
(

)1)(
1

1
()1(

ζζ
ζζ

ζζ
ζ

ζ

ζ
ζ

ζ
ζ

 

This dramatic result signifies the nomenclature that is elicited 

when such type of aforementioned mathematics impossibility is 

considered to eventuate. 

Another way of viewing this ramification is as follows: 

From above, 

)51tan151tan(51tan)51tan1(
oo2oo ++−=−+− ζζζζ Rz  

)]1()1(51tan[)1(51tan)1(
o2o −−+=+−− ζζζζ Rz  

)]1()1)(
1

1
[()1)(

1

1
()1(

2 −−+
+

−
=+

+

−
−− ζζ

ζ
ζ

ζ
ζ

ζ
ζ Rz  

)]1()1[()1()1(
2 −−−=−−− ζζζζ Rz  

2
00 Rz=  [Ref. Section 8.4] 

Such result is considered to mean that any value which the cubic 

root zR assumes still satisfies the equality! 
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Again, this is an indication that an inadequate amount of detail 

has been supplied. 

Both above analyses indicate that such mathematically based, 

perpetuated null set nomenclature is completely influenced by a 

far more important governing rule which postulates that cubic 

irrational numbers cannot be represented via geometric 

construction predicated upon a given, arbitrary length of unity!  

In other words, they cannot be geometrically constructed from 

any rationally-based result! 

In addition to the null set phenomenon described above, such 

proposed governing rule also has been shown to exert a profound 

influence upon discerning a cubic irrational gateway. 

Such accrued influence upon the overall field of mathematics is 

considered to be far more reaching than even that imposed by the 

very Law of Sines or Law of Cosines! 

Hence, it is proposed that such governing rule most probably now 

should be enacted into Law; thereby stipulating the Section 9.1 

reconstituted conclusion as follows: 

• Rationally-based numbers comprise all real numbers which can 

be geometrically constructed from a given, arbitrary length 

of unity. 

• Cubic irrational numbers comprise all other real numbers; 

specifically, those which cannot be geometrically constructed 

from a given, arbitrary length of unity 

Where, 

Geometrically construct denotes a capability to ascribe 

length by means of the Euclidean Mapping Process 

stipulated in Section 2.3 of this treatise. 
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 ITEM 4.  Sub-element Theory Portrays Cubic Irrational Lengths from Unity and Trisects. 

Equation Sub-element Theory features Atacins, a novel invention 

which portrays (Ref. Sections 22 and 22.6): 

• Geometrically formed cubic irrational lengths from any 

arbitrarily assigned or given length of unity, while still 

adhering to all of the precepts espoused in the conclusion 

given in Section 9.1. 

• Geometrically formed angles of exactly one-third the 

respective magnitudes of any given angles  

Atacins is an acronym for angle trisector and cubic irrational 

length instrument whereby a motion needs to be imparted in order 

to use it properly. 

Such new device is to perform the principal function of 

identifying cubic irrational lengths first and foremost, while 

secondly performing the lesser function of actually trisecting 

various ascribed angles of size 3θ. 

This priority is urged because the concept of depicting exact 

cubic irrational lengths alongside an amalgamation of 

rationally-based lengths that actually define them should 

exemplify a fitting or fundamentally new Number Theory 

groundwork; one from which amazing, new discovery may be 

launched, and one which should serve to appreciably advance the 

overall state-of-the-art!  

In contrast, an ability to trisect an angle, although of 

significant import, nevertheless does not exemplify this same 

profound capability to stand alone as an actual Number Theory 

groundwork in itself; one from which other meaningful 

applications could then become derived. 

4.1.  Geometrically Formed Cubic Irrational Lengths. 

Geometrically formed cubic irrational lengths become evident 

during overlapment, a singular condition observed to occur 

whenever the longitudinal axis of a pre-selected Atacins 

compass arm hovers directly over the determinable point (η,τ) 

(Ref. Sections 22.1). 

How such condition occurs is thoroughly explained by an 

accompanying proof (Ref. Sections 22.6.2). 

Cubic irrational lengths result because geometric constraint 

becomes imposed upon the endpoint of the other compass arm.  

Setting all Atacins compass arm and straightedge lengths 

equal to an arbitrary value of unity assures that resulting 

cubic irrational lengths can become portrayed directly 

alongside such rational unitary basis. 
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4.2.  Theory. 

Atacins physically discerns cubic irrational lengths 

indicative of mathematical cubic root values zR, zS, and zT 

inherent within 3θ Cubic Equations whose )3tan( θζ =  values 

specifically consist of (Ref. Section 22.5): 

a) Rationally-based lengths (Ref. Section 9.1); or 
b) Cubic irrational root lengths ascertained from them.  

In consonance with the Cubic Equation Uniqueness Theorem, 

reiterated below, this may be interpreted to mean (Ref. 

Section 9.3): 

“Only Cubic Equations allow solely rationally-based numerical 

coefficients to co-exist with root sets comprised of 

trigonometric, cubic irrational numbers”. 

When a 3θ Cubic Equation, of the particular form 

designated below, possesses a rationally-based 

coefficient of )3tan( θζ = , its roots nevertheless still 

may be cubic irrational: 

 033 23 =+−− ζζ zzz  

During such circumstances, a co-existence between equation 

rationally-based coefficients and associated cubic irrational 

roots presumably occurs. 

Table 35 relates how cubic irrational root length values 

ascertained from such specific rationally-based values become 

commissioned as actual ζ values in themselves, in order to 

perpetuate numerical length determinations.   

4.3.  Operation. 

Atacins features only compass and straightedge construction 

where actuation proceeds from completely identifiable 

locations (Ref. Section 22.7). 

It enables the trisector of any given angle to be 

geometrically formed, as opposed to geometrically 

constructed, simply by applying the following two step 

process (Ref. Figure 51): 

1) Set angles AOB and A’O’B’ to predetermined angles of 90-
3θ degrees each; 

2) Then articulate, or flex the invention until such time 

that the longitudinal axis of member ''  BO  overlaps point B. 

The trisected angle OO’C thereafter becomes easily identified 

by bisecting the geometrically formed angle OO’A’ either by 

use of added pencil/paper or via ruler (In the event of any conflict 

between this section and U.S. Patent No. 10994569 issued on 5/4/2021, the latter shall 
govern). 
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Atacins creates a geometrically formed depiction of an angle 

exactly one-third the magnitude of any given angle that is 

programmed into it.  Even when the tangent of such resulting 

angle is a cubic irrational length, Atacins depicts it (Ref. 

Section 22.6). 

The device overcomes the rational number to cubic irrational 

number quandary normally experienced during prior attempts to 

perform Euclidean trisection. 

This is achieved by articulating such invention until 

overlapment, as described above, occurs; whereby, cubic 

irrational lengths become portrayed alongside given 

rationally-based ones. 

During such articulation, compass endpoint A’ is to be 

constrained within the slot arrangement appearing in compass 

arm OA  , thereby permitting it to ride only in the horizontal 

direction, or actuate only along the x-axis (Ref. Figure 51).  

Atacins features straightedge member '  OO  whose endpoints 

interconnect to two hinges which belong to compasses OAB and 

O’A’B’, respectively (Ref. Figure 51).  

Therein, members AB    and ''  BA   extended have been inserted only 

to replace the tightening capabilities of such respective 

compass hinges.  Such modification simplifies the operation 

of the device, but is not mandatory. 

Accordingly, Atacins consists of two hinges which attach the 

endpoints of a middle straightedge to respective assemblies 

of swinging arms which collectively may be actuated as 

independent compasses. 

4.4.  Reconciliation between Geometrically Formed Depictions and Proposed Law. 

The above findings remain consistent with the conclusion 

expressed in Section 9.1, thereafter recommended to become 

enacted into Law (Ref. Item 3.3), because of the fact that: 

• Rationally-based numbers comprise all real numbers which 

can be geometrically constructed from a given, arbitrary 

length of unity 

• Cubic irrational numbers comprise all other real numbers; 

specifically, those which cannot be geometrically 

constructed from a given, arbitrary length of unity, but 

can be geometrically formed from a given, arbitrary 

length of unity (Ref. Section 22.7). 
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ITEM 5.  Sub-element Theory Explains why Cubic Functions Indicate Relative Position. 

The Quadratic Formula expresses root set pairs, designated below 

as x1 and x2, as little more than mathematical manipulations of 

only intrinsic coefficients a, b, and c harbored within 

Parabolic Equations of the form 0
2 =++ cbxax : 

aacbb 2/]4[x;x 2

21 −±−=    

The Characteristic Cubic Equation Thruway System enhances upon 

this practice by enabling mathematical operations to be 

performed upon associated equation formats through a conversion 

process, or transformation which internally links resident 

coefficient structures (Ref. Table 16).   

Curve Mapping instead mathematically operates upon just one 

particular coefficient structure, or equation format at a time 

(Ref. Section 14).  It determines sets, or families of 

coefficient permutations comprised of intrinsic RST terminology.  

Hence, a gateway for Equation Sub-element categorizations 

becomes realized. 

Equation Sub-element Curve Mapping Theory maintains that a 

stationary parabolic or Generalized Cubic curve shape exhibits a 

singular equation format structure but, nevertheless, may be 

characterized by a multiplicity of intrinsic mathematical 

expressions, all of which identify relative position away from a 

pre-selected point in space (Ref. Section 14). 

Such concept is further characterized by introducing a 

relativistic approach which applies a mobile origin that is 

perceived to move about to pre-selected points upon an 

orthogonal grid pattern, thereby affording different 

perspectives with respect to such stationary point. 

Now, Parabolic and Generalized Cubic Function coefficient 

structures are considered to be the very best possible 

candidates to represent respective Quadratic and Cubic Function 

format classifications because: 

a. They limit higher order expressions to just one variable (or 
unknown), thereby promoting a simplified mathematical analysis, 

and 

b. They allow for the greatest amount of mathematical flexibility. 

However, circles, ellipses, hyperbolas, Complex Quadratic 

Functions and Complex Cubic Functions such as the one designated 

below also may qualify for subsequent treatment: 
223

yzzz =+++ δγβα  
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Accordingly, selected Parabolic and Generalized Cubic Function 

coefficient structures are listed below: 

y c bx  ax 2 =++  (Ref. Section 14.1) 

yzzz =+++ δγβα 23
 (Ref. Section 14.2) 

The prospect of realizing location from a singular point in 

space is comparable to pinpointing an object by sonar, or wave 

reflection, whereby its distance away is easily calculated by 

assessing the time it takes for the wave to propagate to the 

object, multiplied by a predetermined velocity as it travels 

through a known medium. 

For this study:  Triangulation, which enables a position to be 

trigonometrically determined with respect to two fixed points, 

applies only when such second identified point is used to 

attribute an orientation for a Cartesian Coordinate System 

intended for use in a Curve Mapping analysis. 

Various travel route scenario examples for the Parabolic Curve 

Mapping process are listed below: 

a) Those which occur across its root sets (Ref. Section 24 Related 
Problem Nos. 35 and 36);  

b) Those which occur directly along a Parabolic Curve (Ref. Section 24 
Related Problem No. 38); and 

c) Those which occur along any other selected route, such as over a 
circular path between root sets (Ref. Section 24 Related Problem 

No. 40). 

For each of these Parabolic and Generalized Cubic Function 

coefficient structures, Curve Mapping methodology consists of 

(Ref. Abstract): 
1) A Singularity Proof stating that all family curves superimpose 

onto a parent curve of identical shape (Ref. Sections 14.1.1, 

and 14.2.1); 

2) An accompanying Algorithm which reveals that a singular, 

stationary curve in space may be referred to by a multiplicity 

of independent mathematical functions which afford tracking or 

mapping capabilities (Ref. Sections 14.1.2, and 14.2.2); and 

3) An Application subsection which demonstrates precepts developed 

earlier by focusing upon certain detailed relationships that 

exist between families of identically shaped curves (Ref. 

Sections 14.1.3, and 14.2.3). 

In conclusion, an equation for a fixed curve in space is not 

absolute, but instead becomes altered depending upon an 

observer’s perspective.  Viewers who perceive such fixed curve 

from different vantage points can characterize it by alternate 

equations which also precisely depict it. 
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ITEM 6.  Sub-element Theory Indicates how to Further Reduce Equation 1. 

Over the years, some schools have maintained that Equation 1 is 

irreducible, given that: 

)cos(3os 3  cos 4 3 θθθ += c  [Ref. Equation 1] 

 

In this regard, Equation sub-element theory shows how to reduce 

it from cubic to quadratic form; thereby refuting such 

assertions.  This type of reduction can be achieved simply by 

letting (Ref. Section 2.1.2): 

     )θ3cos(=τ  

     )φ3sin(=λ , and 

θcos2
1

=φsin  

  

Accordingly, an Equation 4 reduction of Equation 1 results, as 

follows:    

0
2

cos)
6

52
(cos 2 =−

−
+

λ
τ

θ
λ

τλ
θ  [Ref. Equation 4] 

 

Next, Equation 4 is confirmed for the specific case when 3θ is 

set equal to 60o (Ref. Section 18.1): 

o603 =θ  

3/60o=θ  
o20=  

2/160cos)3cos( === oθτ  

532088886.0
20cos2

1

cos2

1
sin ===

oθ
φ  

o1467014.32=φ  

o44010419.963 =φ  

993689653.0)3sin( == φλ  
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Then, 

0
2

cos)
6

52
(cos 2 =−

−
+

λ
τ

θ
λ

τλ
θ  

 0
2

20cos)
6

52
()20(cos 2 =−

−
+

λ
τ

λ
τλ oo

 

0
)993689653.0(2

)2/1(
)os20](

)993689653.0(6

5)993689653.0)(2/1(2
[)os20( o2o =−

−
+ cc  

0251587605.0os20671958683.020os oo2 =−− cc  

0251587605.0631434616.0883022221.0 =−−  

00 =  

In conclusion, Equation 1 can be reduced further.  Although 

present day conjecture is that such equation is irreducible, 

reduction becomes precipitated simply by supplying applicable 

irrational coefficients, as determined by mathematical 

calculations presented above.  As indicated, θcos  may be 

determined directly via the Euclidean mapping process specified 

in Section 2.3, in order to enable its determination directly 

from a straightedge and compass. 

 

ITEM 7.  Sub-element Theory Algebraically Determines when Angle Trisectors can be  
Geometrically Constructed without having to Resort to Aforehand Knowledge 
of a Common Root Value ZR. 

Equation Sub-element Theory explains that occurrences of angle 

trisectors which can be geometrically constructed, although 

rather rare, can be identified by applying Equation 51 cited 

below: 

γ
βγζ

+
−−

=
3

4)1(3
Rz  [Ref. Equation 51] 

Criterion (Ref. Section 19): 

Angle trisection via geometric construction can be 

determined algebraically as occurring whenever respective 

coefficient values β, γ, and δ relating to a second, 

independent Generalized Cubic Equation whose Sub-element 

R=1 can be developed via Equation 51 without having 

aforehand knowledge of its common root value zR. 

 

 

 

 

 

 



 

 21 

 

With respect to this above criterion, the root value zR 

appearing in Equation 51 is considered to be common to both 

of the following equations: 

• The 3θ Cubic Equation, hereinafter also referred to as a 

primary Generalized Cubic Equation of the form: 

0tan3tan3tan 23 −+−− ζθθζθ  [Ref. Equation 3] 

• A second, independent Generalized Cubic Equation whose 

Sub-element R=1 of the form: 

023 =+++ δγβ zzz  [Ref. Equation 32] 

Where, Sub-element R=1 evidences conditions when:  

θθθ tantan)1( tan Rz ===R
 [Ref. Section 10] 

Besides Equation 51 cited above, other yet to be defined 

equations also show promise to surface additional potential 

occurrences of angles which can be trisected via singular 

compass and straightedge.  In this regard, the possibility of 

linking a second, independent Generalized Cubic Equation whose 

Sub-element R≠1 to the aforementioned 3θ Cubic Equation through 

another common root value, either zS or zT could rather easily be 

accomplished, considering that: 

θθ

θθ

θθθθ

 tan Ttanz

 tan Stanz

tantan)1( tan Rtanz

T

S

==

==

====

T

S

RR

 [Ref. Section 11.6] 

 

7.1.  An Example of How to Algebrically Determine an Angle Trisector which can be      
Geometrically Constructed without having Aforehand Knowledge of ZR. 

As an example, two occurrences where an angle trisector can 

be geometrically constructed by means of algebraic 

determination are identified below.  This occurs by applying 

a second, independent Generalized Cubic Equation (GCE) that 

is devoid of its second and third terms such that (Ref. 

Section 20): 

0== γβ  

Then, by substituting these coefficients into Equation 51: 

γ
βγζ

+
−−

=
3

4)1(3
Rz  

[Ref. Equation 51] 

03

)0(4)10(3

+
−−

=
ζ  

ζ−=   

Invoking Equation 36 determines: 

γ
βδ

ζ
−
−

=
1

 [Ref. Equation 36] 

01

0

−

−
=

δ
ζ  

δζ ==− Rz  
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Hence, such second, independent GCE assumes the form: 

023 =+++ δγβ zzz  [Ref. Equation 32] 

0)0()0( 23 =−++ RR zzzz  

1
2 =Rz  

1tantan)1(tan ==== θθθRz R
 

1;1tan;tan 21 −+=θθ  

)1arctan();1arctan(; 21 −+=θθ  
oo 135;45=  

oo 405;1353;3 21 =θθ  
ooo 45360;135 +=  

oo 45;135=  

The calculations above indicate that only given angles of 

135o and 45o can be trisected by sole use of compass and 

straightedge when considering second, independent cubic 

equations of 1=R  whose coefficients 0== γβ . 

This is because when 1m≠= δζ  second, independent Generalized 

Cubic Equations of 1=R  other than the one specified above 

cannot meet the conditions set forth by the determined 

equation ζ−=Rz .  For example, given: 

9/13)3tan( == θζ  
o

30484647.553 =θ  
o

43494882.18=θ  

3/1tan == θRz  

However, 9/133/1 −=−≠= ζRz  

Any astute reader should realize by now exacly why such above 

resuylt does not constitute a valid trisection solely by 

Euclidean means.   

For the lesser accomplished reader, however, it furthermore 

is ventured that such finding does not commence from an angle 

of given magnitude 3θ; but instead algebraically determines 
that such angle must be either 135o or 45o.   

Moreover, the contribution of any algebraic determination 

might be construed as an intervention of aforehand knowledge; 

thereby invalidating it as a valid avenue, or solution, to 

geometrically construct an angle whose magnitude amounts to 

exactly one-third the size of a given angle, solely by use of 

a straightedge and compass. 
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7.2.  An Example of How to Algebrically Determine an Angle Trisector which can’t be    
Geometrically Constructed without having Aforehand Knowledge of ZR. 

Appearing below is an example that further discusses such 

above common root value 3/1=Rz  for a 3θ value whose tangent 

amounts to a value of 13/9; thereby signifying a rational root 

which nevertheless still cannot be trisected solely by 

Euclidean means (Ref. Section 19): 
Where, 

3

1
tan == θRz  

o
43494882.18=θ  

o
30484647.553 =θ  

9

13
)3tan( == θζ  

By implementing Equation 51, it can be readily observed that the 
modifying coefficients β, γ, and δ inherent within a second, 

independent Generalized Cubic Equation for R=1 cannot be 

determined; unless, of course, the actual value of such common 

root value zR becomes introduced aforehand.   

γ
βγζ

+
−−

=
3

4)1(3
Rz  

[Ref Equation 51] 

γ
βγ

+

−−
=

3

4)1)(9/13(3
Rz  

)3(3

12)1)(13(

γ
βγ

+

−−
=  

  β12-)1-γ)(13(=)γ+3(z3 R  

 

Upon substituting 3−=γ ,  

βζ )3(4)4)(9(0 −−=  

ζβ 3−=  

The substitution described above becomes useless because such 

resulting coefficients revert back to those which apply to the 
primary 3θ Cubic Equation.  Hence, no second, independent 

Generalized Cubic Equation for R=1 can be generated when 3−=γ . 

For each value of γ other than -3 that is substituted into 

Equation 51, respective coefficient values β, and δ still cannot 

be readily ascertained, simply because the common root value zR 

still remains unknown; thereby, foiling the prospect of 

identifying a trisector which might become geometrically 

determied. 
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ITEM 8.  Sub-element Theory Proposes to Rectify Major Euclidean Limitation. 

Equation Sub-element Theory proposes to rectify a major 

Euclidean limitation; that of being able to replicate only 

rationally-based lengths (Ref. Section 22.2)! 

Because of this, Euclidean practice today looms as being 

somewhat incomplete!   

Rectification consists of enabling mathematicians to 

geometrically portray cubic irrational lengths, as well!  

Whereas geometric construction is principally governed by a 

strict set of rules and regulations, it remains severely 

hampered simply because it has not been permitted to be analyzed 

beyond such confining borders! 

To elaborate, Euclidean practice first should be defined in a 

manner conducive to everybody’s liking.  Naturally, in order to 

enhance it, it would be preferable to describe it with respect 

to itself! 

Such statement might well assert, “Euclidean practice is exactly 

what it is stacked up to be; that is, exactly what it has been 

considered to accomplish since its very inception – No more, and 

no less”! 

Stemming from such logic, another leading question is whether 

Euclidean practice is all that it needs to be. 

In order to answer, a reasonable basis for Euclidean practice 

would have to be established -- one that seemingly would be 

considered to be acceptable to an entire mathematics community. 

Such plausible basis unequivocally would hereinafter state,  

 “Euclidean renderings should be what can be portrayed via 
compass and straightedge tools starting only from an 

arbitrarily assigned, or given length of unity -- No more, 

and no less” (Ref. Section 9.1 Conclusion)! 

Accordingly, what appears to be at issue here is, not the 

adequacy of Euclidean practice, but its very relevancy. 

Such rectification proposes to amend present-day Euclidean 

practice by now allowing it to acknowledge overlapment as 

bonafide means of identifying intersection (Ref. Item 4.1). 

Hence, Atacins then could be legitimized as being fully 

Euclidean since it is comprised solely of compasses 

interconnected via straightedge, and regimented by relative 

motion and geometric constraint aspects entirely recognized as 

properties rudimentary to prevailing Euclidean practice (Ref. 

Sections 22.3.1, 22.3.2 and 22.6). 
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Moreover, overlapment specifically pinpoints a singular location 

along the longitudinal axis of a straightedge which just so 

happens to superimpose upon or coincide with a determinable 

point in space; one which either may be stationary, or moving 

itself (Ref. Section 22.3.3).  

From the distant vantage point of Earth, such distinct 

longitudinal axis, once contemplated to exist outside of the 

realm of Atacins, may be perceived as a straight line of 

seemingly imperceptible width which becomes drawn, for example, 

through Orien’s Belt.  At the precise moment when it is observed 

to pass either directly in front of or behind a particular star, 

no matter how faint, overlapment occurs at the specific location 

where such straight line is viewed to cross, or intersect with 

the star. 

Such process also may be likened to a total eclipse of the sun 

by the moon.  At such time as this occurs, a straight line 

fictitiously can be drawn which is considered to intersect: 

• The center of the moon  

• The center of the sun 

• The midway point between the viewer’s eyes 

Hence, overlapment coexists with intersection.  They go hand-in-

hand, whereby at times they even might be perceived as being 

inextricably linked or associated to one another. ruler (In the event 

of any conflict between this section and U.S. Patent No. 10994569 issued on 5/4/2021, the 
latter shall govern). 

The only difference between them is that overlapment seeks to 

identify additional intersection points that previously either 

went undetected or otherwise were deliberately ignored during 

prior geometric construction exercises (Ref. Section 22.3.3). 

Had Euclid and his contemporaries been advised that cubic 

irrational lengths actually could be depicted solely from a 

unique arrangement of compasses interconnected via straightedge, 

such capability most definitely would have been incorporated 

into their practice long ago.  

Such esoteric notion of intersection points, considered to be 

germane to geometry, nevertheless remains fundamental to 

generally accepted Euclidean practice as well.  Hence, the newly 

fashioned property of overlapment, because it also locates such 

points, should be categorized under this very same, overall 

Euclidean umbrella.    

Such approach, not only would render overall geometric 

operations more complete in the future (Ref. Section 22.2), but 

ultimately avail the portrayal of cubic irrational lengths 
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alongside rationally-based ones -- thereby equipping mankind 

with a very important, new capability!  

 

The prospect of incorporating cubic irrational length portrayals 

into formerly established Euclidean practice without violating, 

detracting from, or otherwise conflicting with its precepts 

theoretically would entail (Ref. Section 22.4): 

• Using only Euclidean compass and straightedge instruments in 

a manner entirely consistent with all of the rules and 

regulations applied during Euclid’s day 

• Treating cubic irrational length geometrically formed 

depiction in exactly the same manner as rationally-based 

geometric construction; whereby both become determinable 

entirely from a given length of unity (Ref. Section 9.1) 

• Acknowledging the process of obtaining geometrically formed 

depictions as a new Euclidean enhancement; one which remains 

completely independent, or is distinguished entirely apart 

from the presently accepted Euclidean process of geometric 

construction 

ITEM 9.  Sub-element Theory Renders Former Approximation Techniques Obsolete. 

Atacins enables cubic irrational lengths to be portrayed as 

exact measurements (Ref. Section 22.6.4). 

Since cubic irrational lengths describe decimal sequences which 

are considered to continue on indefinitely, instead of repeating 

themselves, oftentimes approximation techniques, like the one 

described below, have been administered to replicate them:  

Dividing up a given length of unity into ten equal portions (Ref. 

Figure 45), and then into hundredths (Ref. Figure 46), and so on, 

until such desired cubic irrational length becomes amply gauged 

via ruler. 

Exact geometrically formed depictions do a much better job than 

such approximation techniques.  Hence, in many cases, 

mathematicians should consider the latter as becoming obsolete. 

ITEM 10.  Sub-element Theory Maps Pi. 

With the advent of Atacins, it now becomes possible to map 

79...462643383235897932383.14159265=π  in terms of rational lengths and 

trigonometric aspects of the circle (Ref. Related Problem Number 

48).  Rational length significance can be to whatever number of 

decimal places becomes desired. 
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ITEM 11.  Sub-element Theory Establishes a Complete Cubic Resolution Transform. 

All Generalized Cubic Equations can be resolved by means of a 

complete Cubic Resolution Transform (Ref. Section 13.3). 

It consists of an overall, or universal cubic resolution 

capability that amplifies or expands upon fragmented, or 

partially presented prior state-of-the-art techniques (Ref. 

Section 13.3.6). 

The Cubic Resolution Transform (CRT) serves to unify such 

aforementioned theories into a more powerful, comprehensive 

algorithm that exhibits the following unique attributes: 

11.1.  CRT Enables Direct Resolution of All Generalized Cubic Equations. 

The CRT directly resolves all Generalized Cubic Equations, 

regardless of what format they may appear in (Ref. Sections 

13.3.3 thru 13.3.5 and Related Problems 26 thru 33).  In 

stark contrast, prevalent present day resolutions are limited 

in the sense that they can operate only upon cubic formats 

which are devoid of their second order terms (Ref. Section 

13.3.6).  Accordingly, they require that most given Cubic 

Equations first become subjected to the additional step of 

undergoing a transformation before resolution can be 

accomplished (Ref. Section 13.3.6). 

In conclusion:  From a number theory standpoint, such 

previously developed algorithms more appropriately now should 

be categorized as sub-classifications to this newly proposed, 

universal Cubic Resolution Transform. 

11.2.  CRT Entails a Definitive Geometry . 

The CRT entails, or is predicated upon, a definitive geometry 

(Ref. Figure 11) which now may be applied to such limited, 

present day cubic resolutions in order to allow them to be 

represented geometrically (Ref. Section 13.3.6). 

11.3.  CRT Specifies Newly Identified Coefficient Driven Property ψ=cos(6ω) . 

The CRT contains a newly identified term )6cos( ϖψ =  which is 

coefficient driven, or fully distinguishable by mere 

manipulation of respective Generalized Cubic Equation 

coefficient values (Ref. Section 13.3.3).  It joins a 

distinguished list of other coefficient driven terms: 

o 
a

acbb
xx

2

4
;

2

21

−±−
=   [The well-known Quadratic Formula] 

o 
γ
βδ

θζ
−

−
==

1
)3tan(  [Ref. Equation 36] 

o 

2

3

2

3

)3(2

2729
)6cos(

γβ

δβγβ
ϖψ

−

−−
==   [As derived from Equation 42]  
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)6cos( ϖψ =  can be determined for any specific Generalized Cubic 

Equation coefficient structure.  For example, when 0=β : 

023 =+++ δγβα zzz  [Ref. Equation 32] 

03 =++ δγα zz  

Then, 

2

3

2

3

)3(2

2729
)6cos(

γβ

δβγβ
ϖψ

−

−−
==  

2

3

2

3

]3)0[(2

27)0(2)0(9

γ

δγ

−

−−
=  

2

3

)
3

(2
γ

δ

−

=
  [Ref. Equation 41]  

11.3.1. Direct Computation of cos(2ω) and its Associated Cubic Equation Root zR . 

The term )6cos( ϖψ =  allows for computation of the value of 

)2cos( ϖ  directly from it, and thereafter enables final 

determination of such unknown Cubic Equation root zR as 

follows: 

)]2cos(32[
3

1 2 ϖγββ −−−=Rz  [As derived from Equation 42] 

Such algebraic overcomes an inability, in most cases, to 

trisect 6ω angles via Euclidean geometric construction (Ref. 

Figure 11 and Section 20). 

11.3.2. Determination for Imaginary Cubic Equation Roots . 

The term )6cos( ϖψ =  readily deciphers whether a given 

Generalized Cubic Equation contains imaginary root sets 

(Ref. Sections 13.3.1 and 13.3.2, 13.3.4 and 13.3.5), such 

that, 

If 11 +≤≤− ψ , three real roots exist; if not, an 

imaginary set applies.  

Figure 39 depicts a set of possible curve scenarios where, 

as shown, only the middle curve renders three real roots 

(Ref. Section 15.3).  

11.4.  CRT Adds Criteria for the Trigonometric Solution of the Cubic Equation. 

The CRT affords three possible format selections listed as 

follows, only one of whose respective, coefficient sign 

conventions match those specified in any given, or postulated 

Generalized Cubic Equation devoid of its second term.  Such 

match-up must be conducted prior to performing resolution via 

the well-known Trigonometric Solution of the Cubic Equation 

(Ref. Section 13.3.6): 

o   

o   

o  

0)3cos(cos3cos4 3 =−− θθθ  [Ref. Equation 1] 

0)3sin(sin3sin4 3 =+− θθθ  [Ref. Equation 2] 

0)3sinh(sinh3sinh4 3 =−+ xxx  [Ref. Section 13.3.6] 
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ITEM 12.   Sub-element Theory Resolves Cubic Equations when Sub-element R=1. 

Generalized Cubic Equations (GCE’s) which contain Sub-elements 

of unity can be algebraically resolved. 
They’re easily distinguished because the sums of the coefficients of 

their associated Characteristic Cubic Equations always equal zero.  

This is demonstrated as follows, where (Ref. Section 13.1): 

023 =+++ DCRBRAR  [Ref Equation 31] 

023 =+++ DCSBSAS  

023 =+++ DCTBTAT  

0)1()1()1( 23 =+++ DCBA  

0=+++ DCBA  

This applies to Equation 3, a specific GCE that exhibits a 

root of θθθ tantan)1(tan === RzR
  (Ref. Sections 2.4.3 and 10).  

Then, for the specific case when 590515745.65tan)3tan( === oθζ : 

)tan31)(3tan(tan3tan 23 θθθθ −−=  [Ref. Equation 3] 

033 23 =+−+− ζζ zzz  

0tan)tan()tan( 3223 =+++ θθθ DzCzBz  [Ref. Section 11.3] 

62979979.16
403384527.0

53

96838582.21tan

53

)3/90515745.65tan(

53

tan

3
−=

−
=

−
=

−
=

−
=

oo
B

θ
ζ  

43668279.18
)403384527.0(

3

96838582.21tan

3

tan

3
222

−=
−

=
−

=
−

=
o

C
θ

 

06648253.34
)403384527.0(

5

96838582.21tan

5

tan 333
====

o
D

θ
ζ  

Then:  006648253.3443668279.1862979979.161 =+−−=+++ DCBA  
Therefore, 

403384527.096838582.21tan)3/90515745.65tan()3/3tan(tan ===== oo

Rz θθ  

Check, 

  )tan31)(3tan(tan3tan 23 θθθθ −−=  

  ])403384527.0(31[5)403384527.0(3)403384527.0( 23 −−=  

 )488157231.01(236067978.2210153583.1065638358.0 −−=  

)511842768.0(236067978.2210153583.1 −=  

144515225.1210153583.1 −=  

144515225.1210153583.1 −=  Q.E.D. 

Next, the inherent RST technology can be determined as follows: 

 ])1+B(+D4±))1+B[(
2
1

-=S 2  

])1+62979979.16-(+)06648253.34(4±)1+62979979.16-[(
2
1

-= 2  

)2906415.244+2659301.136±62979979.15-(
2
1

-=  

)5565716.380±62979979.15-(
2
1

-=  

)50785923.19±62979979.15-(
2
1

-=  

2)35.1376590-  ;878059436.3(
2
1

-=  

117.5688295  ;.9390297181-=  
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Such that, 
)( TSRB ++−=  

)1( TS ++−=  

RSTD −=  
ST)1(−=  

ST−=  

 
0=+++ DCBA  

    D)+B+A(-=C  

 ST] - T) + S + (1-1[-=  

 ST) -T - S- 1-1(-=  

ST) -T - S- (-=  

 ST+T+S=  
 )S+1(T+S=  

                                              
1)18.5688295  ; .9390297180-(T+1)17.5688295  ; .9390297181-(=43668279.18-  

T)18.5688295  ; .9390297180-(=1)17.5688295- ; .9390297181(+43668279.18-  

        T)18.5688295  ; .9390297180-(=)3-36.005512;716.4976530- (  

      T=)18.5688295  ; .9390297180-/()3-36.005512;716.4976530- (  

     T=11.93902972- ; 617.5688295  

   
)( TSRB ++−=  

]1)1.93902972- ; 617.5688295(+1)17.5688295  ;.9390297181-(+[1- =  

]1)1.93902972- ; 617.5688295(+1)18.5688295  ;.9390297180-([- =  

 6.629799791- =                                          Q.E.D.  √ 

 

Whereby, 

TS-=D  
 )11.93902972- ; 617.5688295(1)17.5688295  ;.9390297181-(- =  

 )11.93902972- ; 617.5688295(1)17.5688295  ;.9390297181-(- =  

 4.066482533 =                                          Q.E.D.  √ 
 

ITEM 13.  Sub-element Theory Showcases an Equation which can Dispense RST 
Terminology. 

Equation Sub-element Theory showcases a novel missing link 

transform, hereinafter referred to as the Unified Cubic 

Trigonometric Reduction Equation (Ref. Equation 29). It serves 

as a direct conduit whereby RST Terminology embedded within 

Cubic Equations can be dispensed into reduced Quadratic 

Equations.  Because of such linkage, resulting lower order 

Quadratic Equation reductions thereafter house vital higher 

order Cubic Equation information (Ref. Section 10).  
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ITEM 14.  Sub-element Theory Introduces RST Spreads. 

RST Spreads represent an amalgamation of root set spacings that 

apply to any given Generalized Cubic Function (GCF). They accrue 

as the z-axis becomes displaced vertically with respect to such 

curve, now considered to be stationary (Ref. Section 15).   

Hence, they depict an assortment of relative root set spans 

which exist along such GCF as it becomes viewed horizontally 

from different elevations.   
The algebraic format for the GCF is established simply by 

replacing the zero appearing on the right-hand side of the 

Generalized Cubic Equation 32 by the variable y as follows: 

023 =+++ δγβα zzz  [Ref. Equation 32]  

yzzz =+++ δγβα 23  

0)(23 =−+++ yzzz δγβα  

As such, RST Spreads depict an assortment of root sets, each of 

which applies to a specific y value that becomes specified and 

then entered into the above equation.  

14.1.   RST Spreads Designate the very Realms of Three Dimensional Space. 

RST Spreads may be distinguished, or perceived, as deviation 

from a Three Dimensional Space Norm where: 

• Such norm, or benchmark is to be represented as the function for 
Equation 22 as follows, selected because RST Spreads become 

useful when they are categorized with respect to 3θ Cubic 

Functions which they modify, or belong to: 

yzzz =+−− ζζ 33 23  [Ref. Equation 22] 

Where, 

)240tan(tantan

)120tan(tantan

tantantan

o

TT

o

SS

RR

Tz

Sz

Rz

+===

+===

===

θθθ

θθθ

θθθ
  

θθθθθ 33603 =+=++ o

TSR
 

Such norm, hereinafter is to be referred to as the 3θ Cubic 

Tangent Function, or just the 3θ Cubic Function. 

As indicated above, RST Spreads track RST Terminology in the 

form of accrued, respective root set values divided by tan θ. 

• A Three Dimensional Space Norm is to be represented via the 
volumetric expletive RST, otherwise expressed as the negative of 

coefficient ‘D’, specified as follows in the Characteristic 

Cubic Equation: 

023 =+++ DCRBRAR   [Ref. Equation 31] 

023 =+++ DCSBSAS  

023 =+++ DCTBTAT  

Where, 

1=A  
)( TSRB ++−=  

STRTRSC ++=  

RSTD −=  
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As such, RST Spreads designate the very realms of three 

dimensional space which 3θ Cubic Functions occupy (Ref. 

Section 15.2). 

RST Spreads for the norm are constructed by reconstituting 

the 3θ Cubic Function into equation form, and then solving 

for its roots (Ref. Section 15.2).  Based upon this, Figure 

29 depicts an associated RST Spread for the norm when 

360 tan)3tan( o === θζ . 

14.2.  RST Spreads Allow for an Exact Matching of Cubic Function Curve Shapes. 

It is now possible to identify a 3θ Cubic Function which 

assumes the same exact shape as any given Generalized Cubic 

Curve (Ref. Section 15.4). 

Such affinity applies, as well, to their: 

a) Associated 3θ displaced family curves; 
b) Displaced family curves; and 
c) Parent curves. 

More specifically, all above listed curve shapes can be shown 

to be virtually identical except for the fact that they are 

simply translated, or moved to different locations about the 

origin (Ref. Section 15.1). 

Accordingly, all above listed curve shapes must contain the 

same exact coterie of RST Spreads within them. 

Hence RST Spreads inherent within 3θ Cubic Functions 

characterize the root structures for all Generalized 

Cubic Functions. 

Such association of RST Spreads enables these seemingly 

diverse cubic functions now to be portrayed, collated, 

disseminated, and thereafter compiled with respect to one 

another in an effective manner (Ref. Figure 41 and Table 33). 

One specific example relates just how a given RST Spread 

inherent to one set of cubic functions can be traced, or 

charted, to another (Ref. Section 15.1).   
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14.3.  RST Spreads Exhibit an Interchangeability Attribute. 

When a horizontal line becomes constructed somewhere between 

points yA and yB on a 3θ Cubic Function (Ref. Figure 19 and 

Section 14.2.2), three ordinates drawn through locations 

where it intersects such curve always make contact with 

respective R, S, and T curves at only three distinct 

elevations (Ref. Figure 29 and Figure 30 and Table 29). 

This manifestation is known as an interchangeability 

attribute which maintains that volumetric expletives, 

commensurate with the product RST, always remain constant. 

Such interchangeability attribute serves to identify an 

underlying intrinsic quality which otherwise remains hidden 

within Cubic Functions; one which normally would escape the 

purview of most mathematicians. 

A related volumetric expletive is rendered in Figure 31.  It 

graphically depicts a 2121 ))()(( zzzzzz f=  curve to be of the exact 

same shape as its associated 3θ Cubic Function, but riding a 

distance of ζ below it.  Hence, its ordinate or y value, as a 

volumetric expletive, is equal to the 21zzz f  product. 

14.4.  RST Spreads Chart Imaginary Number Thresholds .  

Notice that S and T Curves shown in Figure 29 become bounded 

by vertical projections which emanate from points where 

respective yA and yB horizontal lines intersect the 3θ Cubic 

Function. 

For such 3θ Cubic Function, the vertical projections 

designate thresholds of exactly where the real number root 

set ends and the imaginary number root set begins. 

This is easily understood when viewing Figure 39.  It shows 

three identically shaped curves with only the middle one 

being located such that the abscissa resides within its yA 

and yB horizontal projections.  As such, this curve exhibits 

three respective roots; whereas, the other two exhibit only 

one root each.   

Since cubic roots are defined as respective z locations where 

cubic curves actually intersect with the z-axis, the term 

imaginary retains absolutely no real context, other than that 

it represents non-existent entities which allow cubic 

equation coefficients to become mathematically expressed in 

terms of one real root and two other fictitious numbers. 

Moreover, as the norm or 3θ Cubic Function assumes different 

values of ζ, its S and T curve thresholds move. 
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Accordingly, real root regions become different for each S 

and T Curve represented (Ref. Figure 35, Figure 36 and Figure 

37).  Table 31 represents the basis for such plot by charting 

RST Curves with respect to z.   For each 3θ Cubic Curve, it 

indicates the spans over which the S and T Curves remain real 

and locates exactly where they become imaginary.  Therein, 

respective R, S, and T values are determined as follows: 

'tan
R

θ
fz

=  

'tan
S 1

θ
z

=  

'tan
T 2

θ
z

=  

Within their respective real root regions, S and T Curves 

associated with the 3θ Cubic Curve Sets expressed in Figure 

32 are depicted in Figure 34 where, 
S represents the Lower portion, and T pertains to the upper 

portion of each curve.  S and T Curves are joined, or connected, 

at respective left-most and right-most portions of each curve, 

respectively.   

As an illustrative example, an RST Spread is developed for 

the associated function of the 3θ Cosine Cubic Equation 

yzz =−− 4/)4/3(3 τ  (Ref. Equation 1 and Section 15.3). 

Figure 40, generated through calculations posed in Table 32, 

portrays an RST Spread superimposed over the 3θ Cosine Cubic 

Function whose S and T Terminology exists only within the 

range 1cos1 +≤==≤− fzzθ . 

14.5.  RST Spreads Distinguish 3θ Cubic Function Variability . 

Figure 32 represents sixteen 3θ Cubic Functions which exhibit 

various arbitrarily selected 3θ values.  Such mapping 

displays the variability evidenced by the 3θ Cubic Function 

as it undergoes change in its fundamental property, ζ. 

Figure 33 portrays associated R values for the various 3θ 

Cubic Curves presented in Figure 32.  For any ordinate 

selected, representing a constant value for R, Figure 33 

illustrates just how much shape change occurs to Figure 32 3θ 

Cubic Functions while moving to the right, or increasing in z 

value; where, Cubic Curve shape itself may be viewed as 

another ultimate property. 
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ITEM 15.  Sub-element Theory Establishes Linear Relationship between ζ=tan(3θ) and tan θ. 

Based solely upon a specific mathematical manipulation of 

Characteristic Cubic Equation coefficient values (Ref. Equation 

31), a new significant linear relationship between the tan θ and 

its associated )3tan( θζ =  function is established as follows: 

ζθ )(tan
F

J
−=  [Ref. Equation 48] 

Where, 

]3[2 BDF −=  

GDCBJ ±+−+= )1()(3  

Such that, 

DCBCDBDBCDCBG 346616614)(9 222 −−+++−+++±=  

ITEM 16.  Sub-element Theory Develops J-Function Cubic Expression. 

Equation Sub-element Theory develops a J-function Cubic 

Expression cited below which enables quick determination of its 

unknown root sets (Ref. Section 17.2): 

0)()(3)3( 2223 =−−+
ξξ
F

FJ
F

JFJ  [Ref. Equation 49] 

Such determination applies whenever a given Cubic Equation 

exhibits the above enumerated coefficient groupings. 

Equation 49 is analogous with the 3θ Cubic Equation (Ref. 

Section 17.3). 

Equation 49 conveniently can be applied in consonance with 

Equation 48 to make sense out of, or analyze, a rather dissonant 

set of what before appeared to be inscrutable mathematical 

intangibles (Ref. Section 17.4). 
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ITEM 17.  Sub-element Theory Founds Normalization Transformation. 

Equation Sub-element Theory founds the Normalization 

Transformation of Parabolic Functions which verifies when 

families or sets of parabolic curves are identically shaped by 

graphically superimposing them upon one another. 

This is demonstrated for eighteen parabolic curves as portrayed 

in Figure 15, all of the form y=++  c bx   ax 2
 with their respective 

coefficients, as tabulated in Table 18, reflecting the following 

three specific relationships: 

1) 3=a  

2) )
tan2

tan31
(

2

θ
θ−

= ab  

3) )1(tan
2

2 −= θ
a

c  

Figure 15 applies over the range 1515 +≤≤− x .  Respective 

ordinate, or y-axis values represent the sum of left-hand terms 

for the Parabolic Function y  c bx  ax 2 =++ .  Table 19 tabulates such 

plot points. 

The Normalization Transformation of Parabolic Functions 

translates these eighteen parabolic functions, as portrayed in 

Figure 15, from their respective xM and yM low point locations to 

the origin; thereby, illustrating that all such curves 

superimpose, or overlap upon their family curve y=23x  (Ref. 

Figure 16).  Table 20 tabulates such plot points.  As 

mathematically indicated, all y values in each row of Table 20 

always equal a resulting product of 23x . 

The Normalization Transformation of Parabolic Functions is of 

the form shown below (Ref. Section 14.1.3):  

yycxxbxxa MMM =−++++ )()()( 2  

Essential algorithmic relationships for such charted curves are 

characterized as )2/( abxM −=  and cbxaxy MMM ++= 2 . 

Figure 17 represents an example application by disclosing four 

identically shaped parabolic curves such that the low point of 

one of them, their y=23x  family curve, resides upon the origin.   

Figure 18 renders a second plot which illustrates the respective 

positions of the three other identical curves once they have 

been translated via the Normalization Transformation of 

Parabolic Functions.  As indicated, they are demonstrated to 

precisely align, or coincide with such y=23x  Parent Curve.  
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ITEM 18.  Sub-element Theory Unveils the Trisector Equation Generator. 

Equation Sub-element Theory unveils Equation 52, a Trisector 

Equation Generator for the particular case when:  

3/β−=Rz .   

Its derivation shown below, is inspired by the realization that 

when respective Generalized Cubic Equation coefficients 1=α  and 

27/3βδ = , the cube root term adds to zero for the following 

circumstance: 

α
δαββ

θ
3

27
tan

3 23 −+−
== RzR

 [Ref. Section 13.2 Formula] 

)1(3

)1(273 23 δββ −+−
=  

3

)27/(273 33 βββ −+−
=  

3

3 33 βββ −+−
=  

3

β−
=  

Moreover, since this above circumstance applies when 

γγαγβ 3)1(332 ===  (Ref. Section 13.2): 

Then, 

3/2βγ =  

Accordingly 

023 =+++ δγβα zzz  [Ref. Equation 32] 

027/)3/( 3223 =+++ βββ zzz  

0)3/( 3 =+ βz  

0)3/)(3/)(3/( =+++ βββ TSR zzz  

Therefore, 

03/ =+ βRz  

3/β−=Rz  Q.E.D. 

03/ =+ βSz  

3/β−=Sz  

03/ =+ βTz  

3/β−=Tz  

Notice that for this above circumstance, it is not 

necessary to take a cube root.   

Furthermore, the value of the coefficient β can be either 

rationally-based, or cubic irrational. 

The geometric construction aspect of this analysis 

becomes rather rudimentary since it consists simply of 
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geometrically dividing any value of the coefficient β, as 

specified in a Generalized Cubic Equation whose other 

coefficients are in the following proportions, into three 

equal portions in order to determine its associated root 

zR: 

1=α  

3/
2βγ =  

27/
3βδ =  

Naturally since it is of far greater interest to derive an 

algorithm which instead determines equation types from given, or 

known values of )3tan( θζ =  where their associated cube root terms 

also add out to zero, the above methodology is further applied 

in order to derive Equation 52 as follows: 

Where,  

θθθ tantan)1(tan === RzR
 

0
23 =+++ δγβα RRR zzz  [Ref. Equation 32] 

0tantantan)1( 23 =+++ δθγθβθ  

Such that,  

γ
βδ

ζ
−
−

=
1

 [Ref. Equation 36] 

δβγζ =+− )1(  

δβ
β

ζ =+− )
3

1(
2

 

Substitution below renders: 

0tantantan
23 =+++ δθγθβθ  

0])
3

1([tan)
3

(tantan
22

23 =+−+++ β
β

ζθ
β

θβθ  

0tan)tan1()(tan
3

32
2

=++++− ζθθβζθ
β  

0
)(tan

tan
)3(]

)(tan

)tan1(3
[

32
2 =

−
+

+
−

+
+

ζθ
ζθ

β
ζθ
θ

β  

Completing the square gives: 

2

423
2

22
2

)(tan4

)tantan21(9

)(tan

tan
)3(]

)(tan2

)tan1(3
[]

)(tan

)tan1(3
[

ζθ
θθ

ζθ
ζθ

ζθ
θ

β
ζθ
θ

β
−

++
=

−
+

+
−

+
+

−
+

+  

Then, 

)
tan

tan
)(

4

4
(

)(tan

tan
)3(

)(tan4

)tantan21(9
]

)(tan2

)tan1(3
[

3

2

42
2

2

ζθ
ζθ

ζθ
ζθ

ζθ
θθ

ζθ
θ

β
−
−

−
+

−
−

++
=

−
+

+  

))(tan(tan12)tantan21(9]
)(tan2

1
[]

)(tan2

)tan1(3 342
2

ζθζθθθ
ζθζθ

θ
β −+−++

−
=

−
+

+  

Equation 52 
)(tan2

)tantan(tan12)tantan21(9)tan1(3 234422

ζθ
ζθζθζθθθθ

β
−

−+−−++±+−
=  

Therefore, for any postulated real value of )3tan( θζ =  and its 

associated, calculated value θθθ tantan)1(tan === RzR
, the coefficients 

β, 3/2βγ =  and 27/3βδ =  can be calculated in order to describe a 

Generalized Cubic Equation whose root 3/β−=Rz . 
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ITEM 19.  Sub-element Theory Discredits Attempts to Trisect by means of Geometrically 
Constructing Cube Roots. 

In the past various methods were resorted to which relied upon 

attempts to geometrically construct cube roots.  

The association that Equation sub-element theory bears upon 

such cube root interpretations is presented below. In many 

cases, algebraic interpretations are supplied, thereby becoming 

disqualified as methods which could be used to accomplish 

Euclidean trisection (Ref. Section 21). 

19.1.  Geometrically Constructing Cube Roots is Synonomous with performing Euclidean 
Trisection, and therefore cannot be achieved solely by Euclidean Means. 

With regard to the factor )ω2cos( , as contained in the 

variable l of the Cubic Resolution Transform (CRT) presented 

below, an association with cube roots can be established as 

follows (Ref. Section 13.3): 

0
22

3 3
23 =
















±

ψψ
l

m
l

ff  [Ref. Equation 38] 

Such that 

)2cos(2 ωf=l  [Ref. Figure 11] 

Where the formula for a Binomial Expansion of the 

cube of the polynomial BA ±  is as follows: 
32233 33)( BABBAABA ±+±=±  

For the specific circumstance when: 

)2cos( ω=A  

)2sin( ωiB =  
32233 )]2sin([)]2sin()][2[cos(3)]2sin([)]2[cos(3)]2[cos()( ωωωωωω iiiBA ±+±=±  

)2(sin)]2(cos1)][2[cos(3)]2sin()][2(sin1[3)2(cos 3223 ωωωωωω ii m−−−±=  

)]2(sin4)2sin(3[)]2cos(3)2(cos4[ 33 ωωωω −±−= i  

)6sin()6cos( ωω i±=  

Taking the cube root of each side affords: 

3 )6sin()6cos()2sin()2cos( ωωωω iiBA +=+=+  

3 )6sin()6cos()2sin()2cos( ωωωω iiBA −=−=−  

Such that by summing the two above equations, 

  33 )ω6sin(i)ω6cos(+)ω6sin(i+)ω6cos(=)ω2cos(2  

Now, upon letting ψ  represent )6cos( ω , the following equality 

can be established, 

          1=)ω6(sin+)ω6(cos 22  

           1=)ω6(sin+ψ 22  

                 21)6sin( ψω −=  
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Then, by substituting this result into the equation above, it 

can be shown that, 

3 23 2 ψ-1i-ψ+ψ-1i+ψ=)ω2cos(2  

3 23 2 )1)(1()1)(1( −−−+−−+= ψψψψ ii

3 223 22 )1)1 −−+−+= ψψψψ ii  

3 23 2 )1)1 −++−−= ψψψψ  

 

Since real values for ψ  exist within the range from -1 to +1, 

then the radical 12 −ψ  must be imaginary or equal to zero. 

Hence, except for such latter case, each of the terms 

appearing under the two cube root radicals indicated above 

must be complex numbers.  Now, since taking the cube root of 

a complex number is synonymous with representing its 

trisector in a Cartesian Coordinate System, it would appear 

to be impossible to geometrically construct it solely by 

Euclidean means.  

19.2.  Showing how Cube Roots can be Eliminated through Algebraic Manipulation. 

Except for certain very rare instances (Ref. Section 20), an 

unknown quantity z may be represented as the negative cube 

root of the summation of second, third and fourth terms of a 

given Generalized Cubic Equation for 1=α  that becomes 

mathematically reorganized as follows: 

023 =+++ δγβα zzz  [Ref. Equation 32] 

 0=δ+zγ+zβ+z 23  

δγβ −−−= zzz 23
 

 )δ+zγ+zβ-1)((= 2  

 )δ+zγ+zβ(-1)(= 23  

 3 2 δγβ ++−= zzz  

Since such 2nd and 3rd terms include the unknown 

root, z, its value is required aforehand in order to 

determine the value of the left-hand side of the 

above equation.  Hence, such algebraic relationship 

cannot contribute towards attempting to trisect an 

angle solely by Euclidean means (Ref. Section 19). 
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19.2.1  For Rational Values of ZR and ζ when R=1 and β=0. 

Interposing rational values of θtan=Rz  and )3tan( θζ =  into 

the 3θ Cubic Equation enables results to be obtained which 

thereafter could be geometrically constructed, as based 

upon such input.  For example, when 3/1=Rz  (Ref. Section 19 

Example): 

033
23 =+−− ζζ RRR zzz  [3θ Cubic Equation] 

0)3/1(3)3/1(3)3/1( 23 =+−− ζζ  

01)3/11(27/1 =−−+ ζ  

27/26)27/18( =ζ  

9/13=ζ  

A second, independent Generalized Cubic Equation 

(GCE) for 1=R  and 0=β  can be determined as: 

γ
βγζ

+
−−

=
3

4)1(3
Rz  [Ref. Equation 51] 

γ
γ
+

−−
=

3

)0(4)1)(9/13(3
3/1  

)1)(3/13()3)(3/1( −=+ γγ  

13133 −=+ γγ  

γ1216 =  

γ=3/4  

Hence, the two above determined equations can be combined 

in order to be resolved simultaneously via the Quadratic 

Formula, or the geometric construction Mapping Process 

presented in Section 2.3, as follows: 

033
23 =+−− ζζ RRR zzz  

ζζ −+= RRR zzz 33
23

 

For 1=α  

023 =+++ δγβα zzz  [Ref. Equation 32] 

023 =+++ δγβ zzz  
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Via substitution from above into the Quadratic Formula: 

0]33[
22 =+++−+ δγβζζ RRRR zzzz  

0)()3()3(
2 =−++++ ζδγβζ RR zz  

a

acbb
zR

2

42 −±−
=  [Ref. Quadratic Formula] 

)3(2

))(3(4)3()3( 2

βζ

ζδβζγγ

+

−+−+±+−
=Rz  

)03/13(2

])1()[03/13(4)3/13()3/43( 2

+

−+−+−±+−
=

ζβγζ
  

)3/13(2

)])(3/13(4)9/169()3/13( βζγ −+±−
=  

3/26

)3/4)(9/13)(3/13(4)9/169()3/13( +±−
=  

3/26

)3/4)(13)(3/13(4169)3/1()3/13( +±−
=  

26

9/)169(1313 +±−
=  

2

3/51±−
=  

3/4;3/1 −=  

Accordingly: 

• From a given angle o
30484647.553 =θ , 9/13)3tan( == θζ  can be 

geometrically constructed 

• From the synthesis of such two equations, a common 

root 3/1tan == θRz  can be geometrically constructed using 

the Quadratic Equation expressed above via the mapping 

process stipulated in Section 2.3 

• From such geometrically constructed length of 

3/1tan == θRz , an angle θ then can be geometrically 

constructed which is equal to 
o43494882.18 , or exactly 

1/3 the magnitude of such given angle o
30484647.553 =θ .  

Since such geometric construction relies upon the 

results of an algebraic analysis as aforehand 

knowledge, such process does not qualify as a valid 

Euclidean trisection  

Above, notice that it is not necessary to extract a cube 

root in order to algebraically determine such solution. 
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19.2.2  For β=γγγγ=0. 

An associated analysis begins by examining the Generalized 

Cubic Equation for conditions when 1=α  as follows: 

023 =+++ δγβα zzz  [Ref. Equation 32] 

)( 23 δγβ ++−= zzz  

3 2 δγβ ++−= zzz  

Notice above that in order to calculate a root 

z, it first becomes necessary to extract the 

cube root of a value which is comprised of 

multiples and mathematical combinations of such 

unknown quantity.   

However, this doesn’t apply when 0== γβ  as 

follows: 

0)0()0( 23 =+++ δzzz  

03 =+ δz  [Ref. Section 13.5] 

Where, 

γ
βδ

ζ
−
−

=
1

 [Ref. Equation 36] 

01

0

−
−

=
δ

 

δ=  

Via substitution: 

0
3 =+ δRz  

0
3 =+ ζRz  

           0)tan( 3 =+ ζθR   

 

When 1=R , the above equation then relates θtan  to )3tan( θζ =  

where, 

• )3tan( θζ =  is a value which can be geometrically 

constructed from any given angle 3θ 

• θtan  is a value from which trisected angle θ can be 

geometrically constructed 

Under such conditions,  

0tan 3 =+ ζθ  
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Via further substitution of Equation 3: 

0
tan31

)tan3(tan
tan

2

2
3 =

−

−
+

θ
θθ

θ  

0
tan31

)tan3(
tan

2

2
2 =

−

−
+

θ
θ

θ  

0tan3)tan31(tan 222 =−+− θθθ  

03tan3 4 =+− θ  

01tan 4 =+− θ  

θ4tan1 =  

θ2tan1 =±  

θtan;1 =± i  

θ=± o45  

θ=oo 315;45  

θ3945;135 =oo
 

θ3225;135 =oo
 

ζ=1m  

Accordingly, 

0tan 3 =+ ζθ  

01tan 3 =mθ  
3 1tan ±=θ  

1tan ±=θ  

Since the cube root of unity is defined as 

unity, an algebraic solution becomes afforded 

without having to extract such cube root. 

This above finding is independently confirmed by 

Equation 51 which applies because 

θθθ tantan)1(tan === RzR  as follows: 

γ
βγζ

+
−−

=
3

4)1(3
Rz  [Ref. Equation 51] 

03

)0(4)10(3

+
−−

=
ζ

 

ζ−=  [Ref. Section 20.1] 
3

Rz=  [Since 0
3 =+ ζRz  above] 

2
1 Rz=  
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Taking the square root produces values for zR as 

follows: 

Rz=1  

Rz=±1  [Ref. Section 20.1] 

θtan=  

θ=± )1arctan(  

θ=oo 135;45  

θ345;135 =oo
 

)3tan(45tan;135tan θ=oo
 

ζ=+− 1;1  

 

Check, 

0
3 =+ ζRz  

01
3 =−Rz  

0113 =−  

011 =−  

00 =  

0
3 =+ ζRz  

01
3 =+Rz  

01)1( 3 =+−  

011 =+−  

00 =  

As such, the two specifically determined 

Generalized Cubic Equations, 1
3 ±=Rz , do not 

require cube roots to be geometrically 

constructed because they can be reduced to 

respective Quadratic Equations as demonstrated 

above. 

19.2.3  For Circumstances when Generalized Cubic Equations Exhibit 
Coefficients in Prescribed Ratios. 

One good example of first interpreting, and thereafter 

geometrically operating upon the coefficient structures of 

given cubic algebraic equations pertains to a cubic root 

which, in fact, is equal to a fraction of a coefficient 

which appears in a Generalized Cubic Equation. 

For purposes of illustration, for: 

Rz3−=β  

Rz=−
3

β
 

3
0

β
+= Rz  

3)
3

(0
β

+= Rz  

3223
)3/()3/(3)3/(3 βββ +++= RRR zzz  

27/)3/( 3223 βββ +++= RRR zzz  
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Such that, 

δγβα +++= zzz 230  [Ref. Equation 32] 

Matching like coefficients renders: 

1=α  

3/2βγ =  

27/3βδ =  

As such, a Generalized Cubic Equation whose 

coefficients appear in the respective 

proportions afforded below contains a root equal 

to 3/β−=Rz : 

027/)3/( 3223 =+++ βββ RRR zzz  

Notice that for this above case, the value of 

the coefficient β is either rationally-based, or 

cubic irrational. 

The geometric construction aspect of this 

analysis becomes rudimentary since it consists 

simply of geometrically dividing any given value 

of β into three equal portions in order to 

determine the value of its associated root zR. 

Moreover, since γγαγβ 3)1(332 === , the following 

equation also applies (Ref. Section 13.2): 

α
δαββ

θ
3

27
tan

3 23 −+−
== RzR   

)1(3

)1(273 23 δββ −+−
=  

3

)27/(273 33 βββ −+−
=  

3

3 33 βββ −+−
=  

3

β−
=  

As indicated above, the cube root term always 

adds out to zero when making use of such 

Generalized Cubic Equation format. 

Unfortunately, this above analysis represents 

little more than determining equations for any 

prescribed root zR whose coefficient β can be 

acted upon via geometric construction for 

purposes of again identifying or producing such 

given root. 
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Three other Cubic Equations of the above format 

are determined below through a simplified 

process.  One exhibits a rational cubic root, 

another contains a cubic root comprised of a 

square root quantity that can be geometrically 

constructed via the mapping process specified in 

Section 2.3, and another expresses an cubic 

irrational cubic root as follows: 

For 

5/1tan == θRz  

Rz3−=β  

5/3−=  

3/2βγ =  

25/3=  

27/3βδ =  

9/γβ=  

125/1−=  

For 

73tan +== θRz  

Rz3−=β  

)73(3 +−=  

3/2βγ =  

)7616(3 +=  

27/3βδ =  

9/γβ=  

)73490(1 +−=  

For 

363970234.020tantan === o

Rz θ  

Rz3−=β  

091910703.1−=  

3/2βγ =  

397422994.0=  

27/3βδ =  

9/γβ=  

048216713.0−=  

Check, 

0
125

1
)

25

3
(

5

3 23 =−+− zzz  

0
125

1
)

5

1
)(

25

3
()

5

1
(

5

3
)

5

1
( 23 =−+−  

01331 =−+−  

00 =  

 

0)73490()7616(3)73(3 23 =+−+++− zzz  

0)73490()73)(7616(3)73)(73(3)73( 23 =+−+++++−+  

0)73490()73)(7616(3)7616)(73(3)776372727( =+−+++++−+++  

0)73490()7616)(73)(33()73490( =+−++−++  

0)73490()73490( =+−+  

00 =  

0048216713.0397422994.0091910703.1 23 =−+− zzz  

0048216713.0)363970234.0(397422994.0)363970234.0(091910703.1)363970234.0( 23 =−+−  

0048216713.014465014.014465014.0048216713.0 =−+−  

00 =  

For the first of these above determined Cubic Equations, 

roots may be determined linearly via the expression posed 

in Equation 51 as follows: 



 

 48 

For 0
125

1
)

25

3
(

5

3 23 =−+− zzz  

Where, 

γ
βδ

ζ
−
−

=
1

 [Ref. Equation 36] 

)
5

5
(

25

3

125

125

)
25

25
(

5

3

125

1

−

+−
=  

110

74
=  

γ
βγζ

+
−−

=
3

4)1(3
Rz [Ref. Equation 51] 

)
5

5
(

25

3
)

125

125
(3

)
25

25
)(

5

3
(4)]

125

125
()

5

5
(

25

3
)[

110

74
(3

+

−−−
=  

15375

300)110)(
110

74
(3

+

+−
=  

390

78
=  

5

1
=  Q.E.D. 

19.2.4  For Applications of the Trisector Equation Generator. 

As presented below, Equation 52 can be used to determine 

equation types from given, or known values of )3tan( θζ =  such 

that their associated cube root terms also add out to zero. 

]tan3tan12tan18tan12129)tan1(3][
)(tan2

1
[ 43222 θθζθθζζθ

ζθ
β −++−+±+−

−
=  

 

Based upon the derivation of such equation, it turns out that 

for any postulated real value of )3tan( θζ =  and its associated, 

calculated value θθθ tantan)1(tan === RzR , the coefficients β, 

,3/β=γ 2  and β+)
3
β

-1(ζ=δ
2

 can be calculated in order to describe a 

Generalized Cubic Equation whose root is 3/β−=Rz . 
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Now, for the specific case when it is intended that: 

9/13)3tan( == θζ  
o30484647.553 =θ  

o43494882.18=θ  

3/1tan == θRz  

 

Equation 52 yields: 

]tan3tan12tan18tan12129)tan1(3][
)(tan2

1
[ 43222 θθζθθζζθ

ζθ
β −++−+±+−

−
=  

]81/381/5281/16281/46881/)2028729()9/10(3][
)9/10(2

1
[ −++−+±−

−
=  

]352162468)2028729(
9

1

9

30
][

20

9
[ −++−+±−
−

=  

]49162468275730][
20

1
[ ++−±−
−

=  

2500
20

1

2

3
m=  

2

53 m
=  

4;1 +−=  

3

2β
γ =  

3

16
;

3

1
=  

 

βγζδ +−= )1(  

4)
3

16
1(

9

13
;1)

3

1
1(

9

13
+−−−=  

)
27

27
(4)

3

13
(

9

13
;

27

27
)

3

2
(

9

13
+−−=  

27
61

-;
27
1

=  

Hence, such above determined coefficients generate the 

following pair of Generalized Cubic Equations: 

023 =+++ δγβα zzz  [Ref. Equation 32] 

0
27

1

3

123 =−+− zzz  

0
27

61

3

16
4 23 =−++ zzz   
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Check, 

For 

0
27

1

3

123 =−+− zzz  

γ
βγζ

+
−−

=
3

4)1(3
Rz [Ref. Equation 51] 

)
3

3
(

3

1
)

9

9
(3

)
9

9
)(1(4)]

3

3
(1

3

1
)[

9

13
(3

+

−−−
=  

9

3

9

27

)
9

36
()

3

2
)(

3

13
(

+

+
−

=  

30

10
=  

3

1
=  

For  

0
27

61

3

16
4 23 =−++ zzz  

γ
βγζ

+
−−

=
3

4)1(3
Rz  

)
3

3
(

3

16
)

9

9
(3

)
9

9
)(4(4)]

3

3
(1

3

16
)[

9

13
(3

+

−−
=  

9

4827

)
9

9
)(4(4)

3

13
)(

3

13
(

+

−
=  

75

25
=  

3

1
=  

 

Also: 

αγβ 32 =  

)3/1)(1(3=  

1±=β  

12 −=β  

αγβ 32 =  

)3/16)(1(3=  

16±=β  

41 +=β  

So, 

α

δαββ

3

273 23

22 −+−
=Rz  

3

)
27

1
()1(27)1(1 3

23 −+−−++
=  

3

111 3 +−++
=  

3

01+
=  

3

1
=  

α

δαββ

3

273 23

11 −+−
=Rz

3

)
27

61
()1(27)4(4 3

23 −−+−
=  

3

1254 3+−
=  

3

54 +−
=  

3

1
=  
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And: 

027/1)3/1(23 =−+− zzz  

0
27

1
)

3

3
)(

3

1
(

3

1
)

3

3
()

3

1
()

3

1
( 23 =−+−  

027/)1331( =−+−  

00 =  

0
27

61

3

16
4 23 =−++ zzz  

0
27

61
)

3

3
)(

3

1
(

3

16
)

3

3
()

3

1
(4)

3

1
( 23 =−++  

0
27

6148121
=

−++
 

00 =  

Now with regard to these newly determined equations, The 

common root 3/1=Rz  for the first given Cubic Equation above 

can be geometrically constructed without having to take a 

cube root since such cube root term adds out to zero. 

Moreover, such first given Cubic Equation, as cited above, 

contains 3/3/1 β−==Rz  as a root; thereby representing the 

tangent of the trisected angle θ, the latter of which then 

could be geometrically constructed very easily. 

With regards to the second above given Cubic Equation, 

027/61)3/16(4 23 =−++ zzz , its associated root zR can be 

geometrically constructed from its given coefficients via 

application of Equation 51, as shown above.  Hence, in this 

particular case, it also is not necessary to obtain a cube 

root via geometric construction. 

Therefore, a given angle of 
o30484647.553 =θ  can be divided 

into three equal angles of 
oo 43494882.183/30484647.55 ==θ  each 

by means of a geometric construction which utilizes nothing 

more than a straightedge and compass when applying the 

coefficients and respective formats expressed in either of 

the above determined Cubic Equations. 

In conclusion,  Generalized Cubic Equation formats 

exhibiting a sub-element of 1=R  contain a root of θtan=Rz  

with respect to their characteristic values of )3tan( θζ =  

such that, 

γ
βδ

ζ
−
−

=
1

 [Ref. Equation 36] 
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Accordingly, such values zR and ζ can be determined by a 

geometric construction which employs only straightedge and 

compass instruments that operate solely upon various 

inherent coefficients resident within these formats. 

Since an angle of 3θ can be geometrically constructed from a 

given value of )3tan( θζ = , and since an angle of θ also can be 

geometrically constructed from such previously algebraically 

determined value of θtan=Rz , trisection can be achieved 

through geometric manipulation of such inherent coefficients. 

This does not constitute a bonafide Euclidean Trisection 

event since such Generalized Cubic Equation formats exist 

merely as algebraic transformations that constitute aforehand 

knowledge of such desirable root structures in the first 

place (Ref. Section 19). 

ITEM 20.  Sub-element Theory Monitors and Substantiates its Own Adequacy. 

Equation Sub-element Theory monitors, as well as, substantiates 

its very own adequacy by actually resolving sample problems 

which have been introduced into various treatise analysis and 

application sections.  The problems serve to validate intended 

hypothesis performance.   

Moreover, Sections 13 and 18 present numerous problem examples 

as well. 

For example, resolution of any given Generalized Cubic 

Equation is best achieved by first interpreting its 

coefficient structure, and then administering the easiest to 

apply resolution method.   

Such interpretation and resulting method of resolution 

consists either of: 

a) Determining whether any inherent R, S, and T sub-element 
values equal unity (Ref. Section 13.1); 

b) Discerning whether their coefficients relate to one 
another in a certain prescribed manner (Ref. Sections 

13.2, 13.4 and 13.5); or 

c) Ascertaining the root structure via Cubic Resolution 
Transform since it applies to all Generalized Cubic 

Equations (Ref. Section 13.3). 

Lastly, Section 24 incorporates almost 150 additional pages of 

related problems that are presented in the same sequence as 

respective supporting theories are afforded in the treatise 

itself.  This locates related problems that apply to specific 

hypotheses all in one particular area. 
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ITEM 21.  Sub-element Theory Mathematically Quantifies Moving Waves. 

Equation Sub-element Theory mathematically equates moving waves 

to a series of curves that infinitesimally change shape over 

time (Ref. Figure 60). 

RST Spread variability renderings, such as those portrayed in 

Figure 33, may be used to chart such small shape changes; 

thereby, enabling their correlation with respect to 

instantaneous forces which either may be applied during such 

wave action, or that become imposed as the result of such 

movement (Ref. Section 23). 

ITEM 22.  Sub-element Theory Enlists Complex Quadratic Equation Formats.  

Equation Sub-element Theory enlists Complex Quadratic Equation 

formats to mathematically arrange multiple quantities of 

unknowns. 

They suitably depict unknown physical and thermodynamic 

properties which fundamentally are considered to change value 

over time. 

Section 3.4.1 cites well-known Complex Quadratic Equations that 

are evidenced within the field of Physics. 

Such equations, in turn, become mathematically operated upon in 

order to produce new expressions (Ref. Section 3.4.2).   

Such reformatting, or transformation, enables them to be 

specifically adapted for purposes of resolving physics 

characterizations which otherwise might remain very difficult to 

quantify (Ref. Related Problem Number 9; Section 24). 

Equation Sub-element Theory recruits other equation formats 

(alongside Equation 30, Equation 36 and Equation 48 addressed 

earlier) which all also possess the capability to link 

trigonometric values of an angle to those of one-third its size. 

These consist of the following formats (Ref. Section 18): 

• An Equation 1 Reduction 

• Equations resulting when ζθ /1)3tan(/1 −=−Rz  

• Complex Quadratic Equations for the Angle Trisector Triangle 

• Equations Emulated by the Cosine Circle 

ITEM 23.  Sub-element Theory Relates Elliptical Relationships.  

Equation Sub-element Theory relates Cubic and Sixth Order 

Elliptical Relationships (Ref. Equations 44 and 45) to the 

geometry posed in Figure 12. 
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ITEM 24. Sub-element Theory Linearizes the Cube.  

Three equations derived for purposes of Linearizing the Cubic 

are presented as follows: 

• 
ηθη

τ
θ

2
)

cos

1
(

sin

1
+=  

• 
ηθη

τ
θ

2
]

)2cos(

1
[

)2sin(

1
+−=  

• 
ηθη

τ
θ

2
]

)4cos(

1
[

)4sin(

1
−=  

Such Linearizations, or Cubic Equation reductions into Linear 

form, are depicted in Figure 9.   

This process may be viewed as actually skipping over quadratic 

representations entirely, or transforming from Cubic Equations 

directly into associated Linear reductions. 

ITEM 25. Sub-element Theory Charts Physics Law of Reflection.  

Transmitted rays whose angles of incidence and reflection are 

equal now can be precisely charted via Atacins without having to 

apply a protractor (Ref. Figure 54).  


