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ABSTRACT 

This treatise formally establishes the Principles of Equation 

Sub-elements – being a headlong excursion into the topsy-turvy 

preoccupation of classifying mathematical equation formats. 

Equation sub-elements, hereinafter deemed RST terminology, 

reveal just how Quadratic and Cubic Equations behave with 

respect to one another.  

They operate from behind the scenes, governing equation 

interaction through a network of strict rules.  

RST terminology acts to associate coefficient structures evident 

within algebraic equation formats to their very root sets; 

thereby enabling them to be directly solved through the use of 

newly presented formulas. 

RST sub-elements appear as respective factors serving to 

characterize Generalized Cubic Equation root set values zR, zS, and 

zT during specific circumstances when such equation’s coefficient α 

is set equal to unity as follows: 

023 =+++ δγβα zzz  Generalized Cubic Equation [Ref. Equation 32] 

023 =+++ δγβ zzz  

Where,  

TT

SS

RR

θθ

θθ

θθ

tan tan Tz

tan tan Sz

tan tan Rz

==

==

==
 

[Ref. Section 10] 

As indicated directly above, RST terminology also relates the 

tangent of an angle θ to respective tangents of three root set 

characteristic angles, hereinafter denoted as θR, θS, and θT, the 

sum of which equals 3θ degrees as follows:  

θθθθ 3=++ TSR
 [Ref. Section 10] 

Accordingly, Quadratic and Cubic Equations now can be linked via 

trigonometric sets of θ and 3θ that exist within existing root 

sets and constituent coefficient structures.  For example, 

o The Generalized Cubic Equation is of universal significance 

because it accounts for all Cubic Equation possibilities where 

‘z’ appears as the only unknown quantity.  Therein, tan θ 

presents itself as a factor to all three roots zR, zS, and zT 

(as indicated above); whereas )3tan( θξ =  manifests itself as an 

Overall Equation Characteristic Value that readily can be 

determined via manipulation of Equation 32 coefficients in 

accordance with Equation 36 shown below: 

γ

βδ
ζ

−

−
=

1
 [Ref. Section 36] 

o The Simplified Unified Cubic Trigonometric Reduction Equation 

(SUCTRE) (Ref. Equation 30) reiterated below exhibits tan θ as 
its principal quadratic unknown; whereby, )3tan( θξ = , is a factor 

contained within both its first and third term coefficients: 

0)1(tan]3[tan]3[ 2 =+−−−+ DDBDC ζθθζ  
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Accordingly, for each value of ζ identified in a specific 
Generalized Cubic Equation, there exists an associated SUCTRE 

which features identical tan θ and )3tan( θξ =  aspects. 

SECTION 6 

Equation Sub-element categorization begins by creating a 

hierarchy chart (Ref. Table 10) which exhibits the following 

attributes: 

• It categorizes equations and functions by section, where 
o Section 2 depicts Fundamental Information 

o Section 3 depicts Complex Quadratic Equations 

o Section 4 depicts Complex Quadratic Functions 

o Section 5 depicts Cubic Equations and Functions  

Such that, 

Complex Quadratic Equations relate various combinations of 

first and second order multiple unknown quantities (such as 

‘x1’, ‘x2’, etc) to their coefficients (Ref. Section 2.2). 

Such appellation is meant to differentiate them from 

regular, or normal Quadratic Equations which relate first 

and second order combinations of just a singular unknown 

quantity; in this case, ‘x’, to various coefficients. 

Complex Quadratic Equations allow for special monitoring of 

multiple unknowns where each can become individually 

interrogated.  This is similar to the manner in which 

partial differential equations may be used to identify 

specific values for typical thermodynamic properties such 

as pressure, volume, and density, by acting upon one 

variable at a time while ascribing distinct values to such 

other unknowns. 

Such concept also extends to Complex Linear Equations which 

contain multiple unknowns that only are expressed linearly. 

• It expresses parent lineage, or paths of development, 
which, by quick glance, help to determine various 

similarities and differences that exist between the 

equation types expressed above 

• It identifies distinguishing details that exist between 
respective equations, in order to rapidly segregate those 

which possess identical z1 or ζ  values in common. 

Section 6.1 cites certain similarities which independent 

equations derived from the same parent equation bear in 

common.  For example, Complex Quadratic Functions referred to 

in Figures 4 thru 6 exhibit only two roots each; and these 

entail all of the possibilities for identifying two out of 

three roots of the Figure 7 Cubic Function plot.   

Section 6.2 identifies certain differences which otherwise 

exist; whereby, Complex Quadratic Equations can exhibit roots 

not contained in their associated Cubic Equations.  
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SECTION 7 

Three equations derived for purposes of Linearizing the Cubic 

are presented as follows: 

• 
ηθη

τ

θ

2
)

cos

1
(

sin

1
+=  

• 
ηθη

τ

θ

2
]

)2cos(

1
[

)2sin(

1
+−=  

• 
ηθη

τ

θ

2
]

)4cos(

1
[

)4sin(

1
−=  

Such Linearizations, or Cubic Equation reductions into linear 

form, are depicted in Figure 9.   

This process may be viewed as actually skipping over quadratic 

representations entirely, or transforming from Cubic Equations 

directly into associated linear reductions. 

SECTION 8 

Identities encompass indeterminate equations whose formats 

defy mathematical resolution.   

Such definition applies even to Cubic Equation formats which 

express only singular unknown quantities such as those 

enumerated in Table 12.   

Each of these above equations is considered to be 

extraordinary in that it manifests only a singular unknown 

but, nevertheless, still defies mathematical resolution! 

Reductions of Cubic or even Higher Order Equations can be 

achieved by substituting respective right-hand lower order 

terms of equations presented in Table 12 for left-hand cubic 

equivalencies appearing in other equations. 

For example, with regard to Quartic Equations, applicable 

cubic expressions expressed in Table 12 need to be substituted 

for twice, in order to reduce into Quadratic Equation format. 

In some identities, each and every included equation 

coefficient equates to zero (Ref. Section 8.3).   

In others, numerical summations of respective terms on each 

side of the equation may equate.  Equality is still maintained 

because left-hand side and right-hand terms sum to zero (Ref. 

Section 8.4). 

Hence, such identities cannot provide quantitative indication 

of unknown numerical value.  However, they can validate that 

mathematical calculations conducted during the reduction 

process were performed correctly! 
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A constituent geometry for generating cosine related 

identities in presented in Section 8.1. 

Equation 27 presents its Complex Quadratic Relationship, while 

Equation 28 depicts its associated Quartic Relationship (Ref. 

Section 8.2). 

Identities can become reconciled when particular unknowns 

become subject to a further mathematical scrutiny which 

enables their determination.  Generally, such values become 

ascertained through other equations which are established 

independent from the identity needing to the resolved. 

For example, the infinite number of solutions that apply to the 

general Cubic Equation 033 23 =+−− ζζ zzz  may be reduced to just three 

once a particular value for ζ becomes selected, or determined 
elsewhere, thereby permitting its entry.   

As ζ is assigned or accorded a particular value, such as  

360tan =o , the general Cubic Equation thereby becomes transformed 

into 03333 23 =+−− zzz .  Hence, the resulting singular unknown z 

then assumes just three determinable values of: 

oo

oo

o

z

z

z

260tan)240tan(

140tan)120tan(

20tantan

3

2

1

=+=

=+=

==

θ

θ

θ
  

On a grander scale, identities can be completely resolved by a 

process hereinafter referred to as mathematical closure (Ref. 

Section 8.5).   

For Complex Quadratic Equation 27, which consists of just two 

variables, it is pointed out that a complete resolution, or 

mathematical closure, becomes achieved only after all possible 

values that could be assigned to one variable determine the 

infinite number of associated values for the other.  

 

As such, equations which harbor a multiplicity of solutions 

too numerous to be assessed mathematically, now can be 

resolved simply by specifying which particular root sets are 

to undergo further treatment.
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SECTION 9  

In order to advance Number Theory state-of-the-art, an attempt 

is made to explain the very existence for varying equation 

formats, and the reason why diversity exists between them. 

To this end, a comparison is conducted between Quadratic and 

Cubic Equation formats which reveals that: 

a) Each exhibits a mathematical structure that actually is 
quite different in nature from the other;   

b) Each functions in a diverse manner; and 
c) Each exists for a unique reason! 

Section 9.1 asserts that all mathematical numbers can be 

categorized either as rationally-based or cubic irrational, 

where: 

Rationally-based numbers consist of: 

a. All rational values; and 

b. Quadratic irrational values such as 1025/73517  which are 

comprised of all lengths that can be geometrically 

constructed via Pythagorean Theorem either from solely 

rational lengths in concert with an infinite variety of 

mathematical combinations of other purely rational 

lengths, or from their results.  

Cubic irrational numbers consist of other irrational values 

and account for all other numbers that cannot be classified 

as rationally-based. 

The rationally-based number classification should be viewed as 

a set of real numbers which includes all possible Euclidean 

determinations that can be geometrically constructed from a 

given, arbitrary length of unity. 
It collates a disparate assortment of rational and quadratic 

irrational lengths together, like 1025/73517 5)62/32(4 ++ , whose 

individual terms consist specifically of:  

1) Rational lengths -- defined as the quotient between two 
given integers and portrayed as follows: 

12

1
1

x

a
x =

∆
=  

The mathematic division represented above identifies a  

length x1 that is determined via geometric construction 

performed in accordance with the Euclidean Mapping Process 

specified in Section 2.3, where: 

o Lengths Δ and 2a, each representing integer values, are 
geometrically constructed via sole straightedge and 

compass using an arbitrary, assigned length of unity as 

a basis 

o Rational length x1 is identified as the horizontal 
offset measured from the right side of the rectangle to 

the point where the diagonal line intersects the 

horizontal line whose height is unity (Ref. Figure 2) 
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Hence, all rational numbers are Euclidean!  In other 

words, each and every one can be geometrically constructed 

from an arbitrary length which is to be designated as one 

unit long via only a straightedge and compass; and 

2) Quadratic irrational lengths – defined as all lengths that 
can be geometrically constructed via Pythagorean Theorem 

either from solely rational lengths in concert with an 

infinite variety of mathematical combinations of other 

purely rational lengths, or from their results. 

Even after such rational values become transformed into 

quadratic irrational lengths via Pythagorean Theorem, it still 

remains possible to measure them, as well as to replicate them 

from a given, arbitrary length of unity.   

Mathematically, such geometric construction process is 

analogous to calculating respective root pair values x1 and x2 

depicted below via Quadratic Formula that operates only upon 

sole rational (or rationally-based) coefficient values a, b, 

and c that are inherent to, or reside within the specific 

Quadratic Equation format 02 =++ cbxax : 

aacbbxx 2/]4[; 2

21 −±−=  

In conclusion: 

• Rationally-based numbers comprise all real numbers which 

can be geometrically constructed from a given, arbitrary 

length of unity 

• Cubic irrational numbers comprise all other real numbers; 

specifically, those which cannot be geometrically 

constructed from a given, arbitrary length of unity 

Section 9.2 presents various equations which express 

mathematical combinations of cubic irrational number roots on 

their right-hand sides that actually can be collated with 

rationally-based numerical results which appear on their 

respective left-hand sides.  They consist of: 

• A known, or given discrete value which equals the product of 

three distinct, but linked, cubic irrational number roots 

(Ref. Table 13)  

• A known, or given discrete value which equals the summation 

of three distinct, but linked, cubic irrational number roots 

(Ref. Table 14) 

• A known, or given discrete value which equals the summation 

of paired products of three distinct, but linked, cubic 

irrational number roots (Ref. Table 15) 

This unique capability to characterize cubic irrational roots 

in terms of sole rationally-based coefficients is reserved 

only for Cubic Equation formats.   

Furthermore, Quadratic Equation formats do not possess this 

ability, simply because they require at least one cubic 

irrational coefficient to be present in order to produce a 

cubic irrational root pair. 
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Section 9.3 asserts that Cubic Equation formats pose a 

complete demarcation from their Linear and Quadratic Equation 

counterparts. 

Such contention prefers an extraordinary implication upon 

Number Theory by suggesting that equations might assume their 

very own form in order to account for the numerical 

representations included therein. 

This gives rise to a new Cubic Equation Uniqueness Theorem as 

described below: 

Only Cubic Equations allow solely rationally-based 

numerical coefficients to co-exist with root sets 

comprised of cubic irrational numbers. 

This theorem in no way disputes, or contradicts the fact that 

cubic irrational root pairs can, and do exist within Quadratic 

Equation formats. 

What is very interesting, predicated upon what was deduced 

above, is that the only way this can occur is when 

coefficients b’ and/or ''c  also are cubic irrational.   

As such, a corollary to the Cubic Equation Uniqueness Theorem 

appears below: 

Cubic irrational root pairs which appear in 

Parabolic Equations or their associated functions 

require supporting cubic irrational coefficients. 

 

A logic diagram is presented in Section 9.3 for purposes of 

verifying the above corollary. 

SECTION 10 

Equation Sub-elements first became evident through a novel 

missing link transform, hereinafter referred to as the Unified 

Cubic Trigonometric Reduction Equation (Ref. Equation 29).  

Such UCTRE serves as a direct conduit whereby RST Terminology 

embedded within Cubic Equations can be dispensed into reduced 

Quadratic Equations.  Because of such linkage, resulting lower 

order equations thereafter house vital higher order equation 

information. 

0tan]3)[(tan]3)[()1( 2 =−+++−+++− θζθζ RSTSTRTRSRSTTSRRST  [Ref. Equation 29] 
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SECTION 11 

Stemming from Equation 29, a set of supporting fundamental 

transforms is determined listed as follows: 

• The SUCTRE -- see above (Ref. Equation 30) 

• The Characteristic Cubic Equation (Ref. Equation 31) 

• The Generalized Cubic Equation (Ref. Equation 32) 

• The Expression for S and T (Ref. Equation 33) 

• The Expression for R and (S+T) (Ref. Equation 34) 

• The Cubic Restitution Equation  (Ref. Equation 35) 

• The ζ Relationship to GCE Coefficients (Ref. Equation 36) 

Of these, the Characteristic Cubic Equation (Ref. Equation 31) 

contains coefficients which are inextricably linked to the 

other aforementioned transforms.  These consist of B, C, and D 

coefficients comprised of RST Sub-element combinations as 

depicted below: 

RSTD

STRTRSC

TSRB

−=

++=

++−= )(
 

As such, in addition to serving as factors to cubic roots, RST 

Sub-elements also permeate, or are embedded deep within the 

framework, or architecture of constituent algebraic equation 

coefficient structures.   

Overall, they perform as building blocks that can be 

associated to a patchwork of other aggregate equation 

assemblages. 

SECTION 12 

In a sense Equation 31 may be viewed as a crossroads which 

interconnects a plethora of other associated transforms by 

means of a so-called Characteristic Cubic Equation Thruway 

System.  It embodies various strategically emplaced Quadratic 

and Cubic Equation Formats where travel between respective 

points occurs whenever one format becomes successfully 

transformed into an adjoining one (Ref. Table 16).  The 

process is controlled by a rigid set of rules (Ref. Table 17) 

which accounts for all of the necessary calculations. 

Such Thruway System may be compared favorably to the software 

and codes which led to the development of the relational 

database, now heavily relied upon in the field of computer 

science.  For purposes of introducing spreadsheets, it first 

assumed the form of System R in its infancy; but later evolved 

into SQL, Oracle, and Excel. 
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SECTION 13 

The coefficient structure for any given Cubic Equation 

provides indication of which methodology should be employed to 

resolve it (Ref. Sections 13.1 thru 13.5). 

 

An interpretation of such structure consists either of 

determining its inherent R, S, and T sub-element values (Ref. 

Sections 13.1 and 13.3), or discerning whether the 

coefficients relate to one another in a certain prescribed 

manner (Ref. Sections 13.2, 13.4 and 13.5). 

 

Section 13.1 applies when an R, S, or T sub-element value 

equals unity.  This causes the sum of the coefficients in the 

Characteristic Cubic Equation (Ref. Equation 31) to equal 

zero, as follows: 

023 =+++ DCRBRAR   [Ref. Equation 31] 

0)1()1()1( 23 =+++ DCBA  

0=+++ DCBA  

In order to determine whether Section 13.1 applies to any 

given, or postulated Generalized Cubic Equation, it first 

becomes necessary to transform it into an associated 

Characteristic Cubic Equation by applying the respective lower 

portion of Table 16 specifications in accordance with the 

Table 17 travel rules.  For example: 

075.154
23 =+−+ zzz  [Given Generalized Cubic Equation] 

First, Equation 36 is applied as follows: 

 

 

)5.15(1

47

−−

−
=  

5.16

3
=  

18181818.0=  
o

3048465.1903 =θ  
o

43494882.63=θ  
o

43494882.63tantan =θ  

2=  
Such that, 

8/7tan/

4/5.15tan/

22/4tan/

1

3

2

==

−==

===

=

θδ

θγ

θβ

D

C

B

A

 

The resulting Equation 31 is: 

0
23 =+++ DCRBRAR  [Assoc. Characteristic Cubic Equation] 

08/7)8/31(2 23 =+−+ RRR  

γ

βδ
θζ

−

−
==

1
)3tan(  [Ref. lower portion of Table 16] 



 

 11 

8/78/3121 +−+=+++ DCBA  

8/243 −=  

0=  

Hence, Section 13.1 applies and: 

1=R  

2tantan)1(tan ==== θθθRzR
 

Values for sub-elements S and T are arrived at by using the 

equation below (Ref. Section 13.1) 

])1(4)1()[2/1(; 2++±+−= BDBTS  

])12()8/7(4)12()[2/1( 2++±+−=  

])2/2(92/73)[2/1( +±−=  

)2/253)(2/1( ±−=  

)]25)2(3)[4/1( ±−=  

267766953.3;267766953.0 −=  

Then, 

535533906.0)2(267766953.0tan === θSzS
 

535533906.6)2(267766953.3tan −=−== θTzT
 

Check, 

075.154
23

=+−+ RRR zzz  

07)2(5.15)2(4)2( 23 =+−+  

0731168 =+−+  

03131 =−  

00 =  

075.154
23

=+−+ SSS zzz  

07)535533906.0(5.15)535533906.0(4)535533906.0( 23 =+−+  

07300775543.8147186258.1153589284.0 =+−+  

0300775543.8300775543.8 =−  

00 =  

075.154
23

=+−+ TTT zzz  

07)535533906.6(5.15)535533906.6(4)535533906.6( 23 =+−−−+−  

073007755.1018528137.1701535893.279 =+++−  

01535893.2791535893.279 =+−  

00 =  
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Section 13.3 introduces an overall, or universal cubic 

resolution capability that amplifies or expands upon 

fragmented, or partially presented prior state-of-the-art 

techniques (Ref. Section 13.3.6). 

 

Hereinafter termed the Cubic Resolution Transform (CRT), this 

newly proposed, overall Cubic Resolution Methodology serves to 

unify such aforementioned theories into a more powerful, 

comprehensive algorithm by offering the following unique 

capabilities: 

• It directly resolves all Cubic Equations, regardless of what 

format they may appear in (Ref. Sections 13.3.3 thru 13.3.5 

and Related Problems 26 thru 33).  In stark contrast, 

prevalent present day resolutions are limited in the sense 

that they can operate only upon cubic formats which are devoid 

of their second order terms (Ref. Section 13.3.6).  

Accordingly, they require that most given Cubic Equations 

first become subjected to the additional step of undergoing a 

transformation before resolution can be accomplished (Ref. 

Section 13.3.6) 

• It exhibits a CRT construction (Ref. Figure 11) which now may 

be applied to such limited, present day cubic resolutions in 

order to allow them to be represented geometrically (Ref. 

Section 13.3.6) 

• It readily deciphers whether a given Cubic Equation contains 

imaginary root sets.  This is accomplished by manipulating the 

known coefficients in order to calculate the value of ψ (Ref. 
Sections 13.3.1 and 13.3.2, 13.3.4 and 13.3.5), such that, 

If 11 +≤≤− ψ , three real roots exist; if not, an imaginary 

set applies  

Figure 39 depicts a set of possible curve scenarios where, as 

shown, only the middle curve renders three real roots (Ref. 

Section 15.3)  

• It affords three possible format selections listed as follows, 

one of whose respective, coefficient sign conventions match 

those specified in any given, or postulated Generalized Cubic 

Equation devoid of its second term.  Such match-up must be 

conducted prior to performing resolution via the well-known 

Trigonometric Solution of the Cubic Equation (Ref. Section 

13.3.6): 

o   

o   

o   

• It mathematically determines a Cubic Equation root in terms of 

the following coefficients and )2cos( ϖ . 

)]2cos(32[
3

1 2 ϖγββ −−−=
R

z  [Derived from Equation 42] 

0)3cos(cos3cos4 3 =−− θθθ  [Ref. Equation 1] 

0)3sin(sin3sin4 3 =+− θθθ  [Ref.  Equation 2] 

0)3sinh(sinh3sinh4 3 =−+ xxx  [Ref. Section 13.3.6] 



 

 13 

• It further explains that the property )6cos( ϖψ =  is coefficient 

driven (i.e.; fully distinguishable merely by coefficient 

manipulation -- Ref. Section 13.3.3), allows for computation 

of the value of )2cos( ϖ  directly from it, and thereafter enables 

final algebraic determination of such unknown Cubic Equation 

root zR. Such approach is consistent with an inability to 

trisect such ϖ6  angle via geometric construction, or Euclidean 

means (Ref. Figure 11). 

Whereas the roots to any given Parabolic Equation of the form 

02 =++ cbxax  are coefficient driven, it can be resolved solely 

by manipulation of its coefficients via the well-known 

Quadratic Formula) as follows: 

a

acbb
xx

2

4
;

2

21

−±−
=  

Sub-element Theory has carried on with this tradition in order 

to surface, or unearth a list of other, new coefficient driven 

properties depicted as follows: 

• 
γ

βδ
θζ

−

−
==

1
)3tan(  [Ref. Equation 36] 

• 

2

3

2

3

)3(2

2729
)6cos(

γβ

δβγβ
ϖψ

−

−−
==

 [Derived from Equation 42] 

More specifically, coefficient driven properties can be 

determined by manipulation of the Generalized Cubic Equation 

coefficient structure.  For example, when 0=β : 

023 =+++ δγβα zzz  [Ref. Equation 32] 

03 =++ δγα zz  

Then, 

2

3

2

3

)3(2

2729
)6cos(

γβ

δβγβ
ϖψ

−

−−
==

 

2

3

2

3

]3)0[(2

27)0(2)0(9

γ

δγ

−

−−
=  

2

3

)
3

(2
γ

δ

−

=
 [Ref. Equation 41] 

In conclusion:  From a number theory standpoint, such 

previously developed algorithms now more appropriately should 

be categorized as sub-classifications to the newly proposed, 

universal Cubic Resolution Transform. 
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Section 13.2 may be employed to resolve a Generalized Cubic 

Equation of the form shown below when αγβ 32 = . 

023 =+++ δγβα zzz  [Ref. Equation 32] 

0)
3

(
2

23 =+++ δ
α

β
βα zzz  

In Cubic Equations where this occurs, one of its roots is 

coefficient driven and, hence, may be determined as: 

α

δαββ

3

273 23 −+−
=z  

Section 13.4 applies to Cubic Elliptical Relationships of the 

form 02 223 =−+− cbabb  (Ref. Equation 44).  Such equation types 

exhibit the Cubic Equation root 2

1 ab = , and meet the following 

typical ellipse properties afforded in Figure 12: 

ABa =  
2

aOAb ==   [When 1=AC ] 

ADc =  

Section 13.5 applies to Generalized Cubic Equations whose β 

and γ terms are equal to zero, as follows: 

0
23

=+++ δγβα RRR zzz  [Ref. Equation 32] 

0001
23

=+++ δRRR zzz  

0
3

=+ δRz  

As demonstrated in Section 13.5: 

0
3

=+ ζRz  
33

)tan( θζ RzR =−=  

θζ tan3 RzR =−=  [Ref. Equation 46] 

The equation form 0
3

=+ ζRz  results from GCE’s when 
Rzβγ −= , as: 

0
23

=+++ δγβα RRR zzz  [Ref. Equation 32] 

0)(1
23

=+−+ δββ RRRR zzzz  

0
3

=+ δRz  
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SECTION 14 

The practice of performing mathematical operations upon 

equation coefficients is neither new nor unique to number 

theory. 

The Quadratic Formula, depicted below, perhaps stands as its 

most famous and significant exponent by expressing root set 

pairs, designated below as x1 and x2, as little more than 

mathematical manipulations of only intrinsic coefficients a, 

b, and c harbored within Parabolic Equations of the form 

0
2 =++ cbxax : 

aacbb 2/]4[x;x 2

21 −±−=    

The Characteristic Cubic Equation Thruway System enhances upon 

this practice by enabling mathematical operations to be 

performed upon associated equation formats through a 

conversion process, or transformation which internally links 

resident coefficient structures (Ref. Table 16).   

Curve Mapping instead mathematically operates upon just one 

particular coefficient structure, or equation format at a time 

(Ref. Section 14).  It determines sets, or families of 

coefficient permutations comprised of intrinsic RST 

terminology.  Hence, a gateway for Equation Sub-element 

categorizations becomes realized. 

Equation Sub-element Curve Mapping Theory maintains that a 

stationary parabolic or cubic curve shape exhibits a singular 

equation format structure but, nevertheless, may be 

characterized by a multiplicity of intrinsic mathematical 

expressions, all of which identify relative position away from 

a pre-selected point in space (Ref. Section 14). 

Such concept is further characterized by introducing a 

relativistic approach which applies a mobile origin that is 

perceived to move about to pre-selected points upon an 

orthogonal grid pattern, thereby affording different 

perspectives with respect to such stationary point. 

Now, Parabolic and Generalized Cubic Function coefficient 

structures are considered to be the very best possible 

candidates to represent respective Quadratic and Cubic 

Function format classifications because: 

1) They limit higher order expressions to just one variable (or 
unknown), thereby promoting a simplified mathematical analysis, 

and 

2) They allow for the greatest amount of mathematical flexibility. 
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However, circles, ellipses, hyperbolas, Complex Quadratic 

Functions and Complex Cubic Functions such as the one 

designated below also may qualify for subsequent treatment: 
223

yzzz =+++ δγβα  

Accordingly, selected Parabolic and Generalized Cubic Function 

coefficient structures are listed below: 

y c bx  ax 2 =++  (Ref. Section 14.1) 

yzzz =+++ δγβα 23
 (Ref. Section 14.2) 

The prospect of realizing location from a singular point in 

space is comparable to pinpointing an object by sonar, or wave 

reflection, whereby its distance away is easily calculated by 

assessing the time it takes for the wave to propagate to the 

object, multiplied by a predetermined velocity as it travels 

through a known medium. 

For this study:  Triangulation, which enables a position to be 

trigonometrically determined with respect to two fixed points, 

applies only when such second identified point is used to 

attribute an orientation for a Cartesian Coordinate System 

intended for use in a Curve Mapping analysis. 

Various travel route scenario examples for the Parabolic Curve 

mapping process are listed below: 

a) Those which occur across its root sets (Ref. Section 24 Related 
Problem Nos. 35 and 36);  

b) Those which occur directly along a Parabolic Curve (Ref. Section 
24 Related Problem No. 38); and 

c) Those which occur along any other selected route, such as over a 
circular path between root sets (Ref. Section 24 Related Problem 

No. 40). 

Parabolic and Generalized Cubic Curve Mapping methodology 

consists of: 

1) A Singularity Proof stating that all family curves 
superimpose onto a parent curve of identical shape (Ref. 

Sections 14.1.1, and 14.2.1); 

2) An accompanying Algorithm which reveals that a singular, 
stationary curve in space may be referred to by a 

multiplicity of independent mathematical functions which 

afford tracking or mapping capabilities (Ref. Sections 

14.1.2, and 14.2.2); and 

3) An Application subsection which demonstrates precepts 
developed earlier by focusing upon certain detailed 

relationships that exist between families of identically 

shaped curves (Ref. Sections 14.1.3, and 14.2.3). 

With particular regard to Parabolic Curve Mapping: 
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• A Singularity Proof (Ref. Section 14.1.1), comprised of a 

threefold mathematical analysis, validates an ability to 

superimpose differing Parabolic Curve Functions of the same 

exact curve shape onto one another.  Functions presented below, 

demonstrated to meet such criteria, maintain their own 

independent origins located respectively at Points O, A, and B 

(Ref. Figure 13): 

o 
O

2

O y  ax =  

o 
A

2

A y  ax =+ My  (Where 
OxxA = ) 

Such that, 

AO yy =+ My  

[Whereas the term yM can assume an infinite 

number of values, its associated term yA 

becomes compensating because it adjusts for 

values of yO which satisfy the function: 

 axy
2

OO = ] 

o 
BB

2

B y  c  bx  ax =++  (Where 
MAB xxx +=  and 

AB yy = ) 

Such that, 

Maxb 2−=  

4a

b2

+= Myc  

[Likewise, as another associated term of 

yM, c becomes compensating because it 

adjusts for values of b2/(4a) which 

satisfy the function y  c bx   ax 2 =++ ] 

Such Singularity Proof furthermore is validated pictorially 

where the above functions are all plotted with respect to a 

common origin located at point A, without compensating for the 

relative origin assignments which were originally applied (Ref. 

Figure 14).  Nevertheless, they still maintain their original 

identical curve shapes in the form of step functions with 

respect to the curve whose low point passes through point A.  

The identically shaped curves appear displaced from one another 

by lengths equal to these respective step functions, or 

distances initially selected between respective origins (Ref. 

Figure 13).  So, once compensation for origin difference becomes 

accounted for, via translation, the three curves become one, or 

coincide, just as is forecasted in this Singularity Proof. 

 

In conclusion, a given Parabolic Function along with two 

transforms derived from it, as listed above, produce a total of 

three identically shaped Parabolic Curves all of which occupy 

the same exact coordinates, where each merits its own 

independent perspective, or point of origin. 

Accordingly, it now becomes possible to associate given 

Parabolic Curves with a plethora of other Parabolic Functions 

which exhibit their same exact shape. 
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• An associated Algorithm (Ref. Section 14.1.2) interprets Figure 

13 as a grid of potential origin relocations away from the low 

point (or high point) of any given Parabolic Curve. 

 

Such given curve may be viewed, or perceived from different 

elevations or perspectives, each offering harbor for a 

multiplicity of Point B origin placements (Ref. Figure 13). 

 

The algorithm is premised upon a set of properties, or curve 

attributes, which identify principal characteristics which 

govern the very shape of any given Parabolic Curve. 

 

With respect to such given stationary Parabolic Curve, for any 

arbitrarily selected origin assignment, such properties relate 

to the coefficients of the General Parabolic Equation 0  c bx  ax2 =++  

and, therefore, also to its respective root sets through the 

universally known Quadratic Formula: 

a

acbb
x

2

42 −±−
=  

In particular, for any specified elevation, or x-axis 

assignment, root sets vary depending upon which particular 

origin relocation is selected.  In other words, for any specific 

elevation, an unlimited number of root sets apply, all of which 

delineate respective distances from selected origins to 

intersection points on the given Parabolic Curve. 

This is easily recognized by observing that measurements 

from Point B to respective x1 and x2 endpoints change as 

such point relocates along the x-axis (Ref. Figure 13). 

Hence, x1 and x2 root sets, as generated from a relocated 

origin, can be of any combination of desired proportions. 

 

Three example proportional sets, as specified below, are further 

examined (Ref. six bullets on page 145): 

o θtan1 =x  

o )2tan(/12 θ−=x  

o θtan1 =x  

o θtan/12 −=x  

o θtan1 =x  

o )2tan(2 θ−=x  

A series of Parabolic Curves each of which bear the exact curve 

shape and same low point value as the following Parabolic 

Function, but whose respective generated root sets along the x-

axis exhibit the above stated three root structures are 

determined (Ref. Section 24 Related Problem Number 39) 

yx =− 2003 2  

Accordingly, the algorithm serves to connect families of 

Parabolic Function coefficient relationships together via their 

association to tan θ. 
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• An Application subsection (Ref. Section 14.1.3) relates 

essential algorithmic relationships for the specific condition 

reiterated below (Ref. Table 18): 

o θtan1 =x  

o )2tan(/12 θ−=x  

This involves determining the following relationship over a 

range of angles, and their associated tangents, by applying 

respective coefficient values calculated from equations 

presented in Section 14.1.2: 

a

b
xM

2
−=  

Respective Parabolic Curve low points, yM then are calculated 

as indicated. 

Figure 15 portrays eighteen identically shaped curves, all 

belonging to the Parabolic Curve Family: 

y  ax 2 =  

Table 19 is a Figure 15 tabulation, wherein examples of how such 

values were arrived at are provided in the write-up. 

 

Figure 16 demonstrates that all eighteen curves, by virtue of 

the fact that they’re identically shaped, entirely overlap one 

another. 

 

This is proven via the following Normalization Transformation 

for Parabolic Functions: 

yycxxbxxa MMM =−++++ )()()( 2
 

For all eighteen curves, transformation results indicate the 

exact same value for y for any value of x, thereby verifying 

singularity of the curve family (Ref. Table 20). 

A later application determines a Parabolic Curve Function 

which exhibits specific low point coordinates, while passing 

through the right-hand root of the function yx =− 2003 2  and 

bearing its identical curve shape. 

 

A second Parabolic Curve Function of similar credential, 

expect for the fact that it can possess different low point 

coordinates, is illustrated in order to emphasize the 

preponderance of other available family curves (Ref. Figure 

17). 

 

Thereafter, Figure 18 reconciles the four identically shaped 

Parabolic Curves by demonstrating that they coincide after applying 

the Normalization Transformation for Parabolic Functions. 

With particular regard to Generalized Cubic Curve Mapping: 
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• A Singularity Proof (Ref. Section 14.2.1), validates that two 

equations, as denoted below, generate identically shaped cubic 

curves: 

1) 
DTRANSFORMEyzzz =+++ ''' 23 δγβ  

2) ''' 23
yzz =++ νσ  

Where, 

'3'
2 γβσ −−=  

]'27''9)'6'2('2[
27

1 23 δγβσγββν +−−−=  

The second curve is established by determining z-axis locations 

where the slope of the first curve is equal to zero.  This is 

achieved by taking the derivative of such upper curve and 

setting it equal to zero, which produces: 

]'3''[
3

1
,

2 γββ −±−=BA zz  

The second function and associated values for its coefficients 

are determined by specifying the respective root values for the 

first function with respect to a relocated origin which is 

displaced a value zB away from the initial origin, as follows:  

BRR z  -z 'z =  

BSS z  -z 'z =  

BTT z  -z 'z =  

Where, 

')'')('')(''( yzzzzzz TSR =−−−  

']''')''()[''( 2' yzzzzzzzz TSTSR =++−−  

''''')''''''(')'''( 23' yzzzzzzzzzzzzzzz TSRTSTRSRTSR =−+++++−  

'''' 23
yzzz =+++ ντσ  

Such repositioning always determines 0=τ  (Ref. write-up) for 

the following overall function. 

'''' 23
yzzz =+++ ντσ  

Accordingly, a Generalized Cubic Function of the form ''' 23
yzz =++ νσ  

always exhibits an origin which is vertically aligned with a 

point upon such curve whose slope is equal to zero. 

 

Another format possibility for the function '''' 23
yzzz =+++ ντσ  occurs 

when 0=σ  as follows: 

'''3 yzz =++ ντ  

This characterizes a function whose associated straight line and 

Perfect Cubic Function (Ref. Section 24 Related Problem Number 

42) intersect at points which are located upon the respective 

vertical projections of its three roots. 
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• An associated Algorithm (Ref. Section 14.2.2) theorizes that a 

Parent Generalized Cubic Function exists which can fully 

characterize any given Generalized Cubic Curve in every respect. 

 

Moreover, it contends that its coefficient structure can be 

determined by mathematically interpreting the values of certain 

properties exhibited by such given Generalized Cubic Curve. 

 

Figure 20 portrays these two aforementioned family curves in 

consonance with their identically shaped (Ref. Table 22) 

associated Parent Generalized Cubic Function, the three of which 

are itemized below: 

1) 
DTRANSFORMEyzzz =+++ ''' 23 δγβ  

2) ''' 23
yzz =++ νσ  

3) '''' 23
yzz =+σ  

In conclusion, Generalized Cubic Curves possessing identical 

shapes may be superimposed onto a single Cartesian coordinate 

system, placed at various strategic locations which are 

traceable to various pre-determined, mutually independent 

Generalized Cubic Functions. 

 

Such activity enables sets, or families of Generalized Cubic 

Functions to become linked, and/or charted into desirable 

arrays, which in turn may be classified with respect to their 

very root structures. 

 

Whereby such root structures specify actual respective 

horizontal spans between locations where Cubic Functions cross 

the x-axis, they now may be categorized in terms of so-called 

RST Spreads (Ref. section 15 below). 

• An Application subsection (Ref. Section 14.2.3) depicts 

variability in curve shape as realized when )3tan( θξ =  changes 

value with respect to the following Cubic Parent Curve (Ref. 

Figure 21 and Table 23): 

'''13'
223

yzz =+− ζ  

Figure 22 shows Equation 25 with respect to its Parent Cubic 

Function, expressed above for the particular case when 3=ζ , 

thereby indicating identical curve shape. 

 

In conclusion, an equation for a fixed curve in space is not 

absolute, but instead becomes altered depending upon an 

observer’s perspective.  Viewers who perceive the fixed curve 

from different vantage points stipulate alternate equations 

which also precisely depict it. 
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SECTION 15 

RST Spreads represent an amalgamation of root set spacings 

that apply to any given Generalized Cubic Function (GCF). They 

accrue as the z-axis becomes displaced vertically with respect 

to such curve, now considered to be stationary.   

Hence, they depict an assortment of relative root set spans 

which exist along such GCF as it becomes viewed horizontally 

from different elevations.   

More specifically, RST Spreads may be distinguished as 

deviation from a three dimensional space norm where, for 

purposes of this treatise: 

• Such norm, or benchmark hereinafter referred to as the 3θ Cubic 

Tangent Function (or just the 3θ Cubic Function) is to be 

represented as the function for Equation 22 as follows, selected 

because RST Spreads become useful when they are categorized, or 

assembled, with respect to 3θ Cubic Functions which they modify, 

or belong to: 

yzzz =+−− ζζ 33 23  [Ref. Equation 22] 

Where,  

)240tan(tantan

)120tan(tantan

tantantan

o

TT

o

SS

RR

Tz

Sz

Rz

+===

+===

===

θθθ

θθθ

θθθ
  

θθθθθ 33603 =+=++ o

TSR
 

• A three dimensional space norm is to be represented via the 

volumetric expletive RST, otherwise expressed as the negative of 

coefficient ‘D’ of the Characteristic Cubic Equation as follows: 

023 =+++ DCRBRAR   [Ref. Equation 31] 

023 =+++ DCSBSAS  

023 =+++ DCTBTAT  

Where, 

RSTD

STRTRSC

TSRB

A

−=

++=

++−=

=

)(

1

 

Such benchmark curve can be associated to three other curves 

of identical shape as follows (Ref. Section 15.1): 
1) The Family Cubic Function which is to be represented by the 

Generalized Cubic Function yzzz =+++ δγβ 23  when 1=α ; 

2) Its associated Intermediate Cubic Function which is to be 
represented by the Function ''' 23

yzz =++ νσ  (Ref. Generalized Cubic 

Curve Mapping Singularity Proof write-up above); and 

3) Its Parent Cubic Function which is to be represented as 
'y'z'z' 23 =+σ .  Notice that the Parent Cubic Function is identical 

to the Intermediate Cubic Function above because: 

''' 23
yzz =++ νσ  

νσ −=+ ''' 23
yzz  

'''' 23
yzz =+σ  
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Whereby its first root, ascertained when setting the function 

equal to zero, may be determined via reduced Linear Equation 

as follows: 

Where, 

0z'z' 23 =+σ  

0z' =+σ  

σ−=z'  

Section 15.1 examines these four Cubic Functions and 

demonstrates how they are associated for the specific RST 

Spread of: 

2/1

4

1

=

=

=

T

S

R
 

In particular, for these Cubic Functions: 

• Table 24 enumerates determined θ and 3θ angles, associated 
tangent information, coefficient and root calculations 

• Table 25  validates that associated Δ and ε property values are 
identical, thereby assuring that curves all are of exactly the 

same shape; it also renders zA and zB location details which 

express how curve shapes are shifted with respect to one another 

• Figure 23 indicates that such sought after RST Terminology 

occurs at an ordinate location of 653.5499289=y  upon the 3θ 

Cubic Function, validated as follows: 
o j1/j2 = 1.118033989/2.236067978= ½ to 1 = T 

o j2/j2 = 2.236067978/2.236067978= 1 to 1 = R 

o j3/j2 = 8.944271911/2.236067978= 4 to 1 = S 

• Table 26  presents their respective plots 

• Figure 24 illustrates the relative positioning of the Cubic 

Family Curve with respect to its associated Intermediate and 

Family Cubic Curves 

• Figure 25 characterizes the relative positioning of the Cubic 

Family Curve with respect to its associated 3θ Cubic Curve 

Next, the above curve set is linked to the Characteristic 

Cubic Equation (Ref. Equation 31), whose calculated 

coefficients were tabulated back in Table 24. Via comparison 

between respective Δ and ε property values, it then is 
determined that the respective curve shapes are not identical. 

Accordingly, a second set of associated curves is then 

developed in similar fashion to that of the first, where 

instead the Characteristic Cubic Function is applied as the 

Family Cubic Function.  Thereafter, Figure 26, Figure 27, 

Figure 28, Table 27, and Table 28 are produced using the very 

same approach described above. 
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Now, the fourth term of the Characteristic Cubic Equation 

(Ref. Equation 31) characterizes RST Terminology as a 

volumetric expletive (Ref. Section 15).  This is evidenced 

below: 

023 =+++ DCRBRAR   [Ref. Equation 31] 

Where,  

RSTD −=  

Therefore, as building blocks to sets of established 3θ Cubic 

Functions, RST Spreads specify the very realms of three 

dimensional space which these equations occupy (Ref. Section 

15.2). 

RST Spreads for the norm are constructed by reconstituting the 

3θ Cubic Function into equation form, and then solving for its 

roots as follows: 

Where, 

yzzz =+−− ζζ 33
23  

0)(33
23 =−+−− yzzz ζζ  

0))((
2 =++− NMzzzz f

 

0)()(
23 =−−+−+ fff NzzMzNzzMz  

Comparison of coefficients yields, 

ζ3−=−
f

zM  

fzM +−= ζ3  

)( yNz f −=− ζ  

fz

y
N

)( −
−=

ζ  

Such That 

a

acbb
zz

2

4
,

2

21

−±−
=  

2

4
2

NMM −±−
=  

]
)(

4)3(3[
2

1 2

f

ff
z

y
zz

−
+−±−=

ζ
ζζ √3 

Figure 29 depicts an associated RST Spread for the norm when 

360 tan)3tan( o === θζ . 

Therein, a real root region is bounded below by the yA 

horizontal offset as it extends to the left until it 

intersects the point of non-zero slope on the 3θ Cubic Curve; 

and is bounded above by the yB horizontal offset as it extends 

to the right until it intersects another point of non-zero 

slope on the 3θ Cubic Curve. 
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With respect to Figure 29, the three dimensional space becomes 

expressed as the product of R, S, and T for any given value of 

z within the real root region.  As such, viewing Figure 29 

along the chart’s abscissa renders a volume which equates to 

the product between S and T for each horizontal offset 

examined, as R equals unity. 

Figure 30 enhances upon Figure 29 by showing vertical lines 

drawn through respective zR, zS, and zT roots of the norm.  It 

is observed that R, S, and T Curves, when crossing such 

vertical lines, continuously do so at the same elevations, 

thereby demonstrating interchangeability.  Such affinity also 

may be attributed to other elevations upon the norm. 

Table 29 gives the associated plot for Figure 30 (as well as 

Figure 29) 

Elevation value interchangeability, as described above, is 

considered to be an RST Spread attribute, or feature which 

serves to identify an underlying intrinsic quality which 

otherwise remains hidden within Cubic Functions.  Attributes 

become further linked to properties, or innate capabilities of 

Cubic Functions and their associated formats. 

Additional attributes are represented as coefficients of the 

3θ Cubic Function.  This is further disclosed in Figure 31 

which depicts two straight lines and a new Cubic Function of 

exact shape to the norm, with the only exception being that it 

rides below it by a distance of ζ 

The two straight line depictions represent respective second and 

third term coefficients of the norm, designated using symbols 

evidenced in the Function of the Generalized Cubic Equation (Ref. 

Equation 32), and relegated to the unknowns zf, z1, and z2 

established above, where: 

ββ yzzz f =++−= )( 21
 

γγ yzzzzzz ff =++−= )( 2121
 

The new Cubic Function of exact shape to the norm is of the 

following form: 

'21 ' δδ yzzz f =−=  

Such that, 

Its ordinates represent associated volumetric depictions 

in linear fashion, another attribute, which truly 

correspond to the product of any of the zf, z1, and z2 

Spreads which reside in the real root region on the 3θ 

Cubic Curve, regardless of elevation. 

Figure 32 represents sixteen 3θ Cubic Functions which exhibit 

various arbitrarily selected 3θ values.  Such mapping reports 
the variability evidenced by the 3θ Cubic Function as it 

undergoes change in its fundamental property ζ. 
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Figure 33 portrays associated R Values for the various 3θ 

Cubic Curves presented in Figure 32.  For any ordinate 

selected, representing a constant value for R, Figure 33 

illustrates just how much shape change occurs to Figure 32 3θ 

Cubic Functions while moving to the right, or increasing in z 

value; where, Cubic Curve shape itself may be viewed as 

another ultimate property. 

 

Another attribute is the z-axis threshold at which S and T 

values, respectively, start becoming imaginary. 

In Figure 33 the z-axis depicts a range between - 3 thru + 3 

representing thresholds below and above which S and T values, 

respectively, start becoming imaginary (Ref. Table 30).  This is 

in stark contrast to R values, as plotted on the y-axis, which 

remain real from negative infinity thru positive infinity. 

 

Within their respective real root regions, S and T Curves 

associated with the 3θ Cubic Curve Sets expressed in Figure 32 

are depicted in Figure 34 where, 
S represents the Lower portion, and T pertains to the upper 

portion of each curve.  S and T Curves are joined, or connected, 

at respective left-most and right-most portions of each curve, 

respectively.  Accordingly, real root regions are different for 

each S and T Curve represented (Ref. Figure 35, Figure 36, and 

Figure 37).  Table 31 represents the basis for such plot by 

charting RST Curves with respect to ‘z’.  For each 3θ Cubic 

Curve, it indicates the spans over which the S and T Curves 

remain real and locates exactly where they become imaginary.  

Therein, respective R, S, and T values are determined as follows: 

'tan
R

θ

fz
=  

'tan
S 1

θ

z
=  

'tan
T 2

θ

z
=  

As a final illustrative example, an RST Spread is developed 

for the associated function of the 3θ Cosine Cubic Equation 

given below (ref. Section 15.3 and Equation 1).  This above 

nomenclature adds to that of the 3θ Cubic Function, which 

really denotes a short-hand notation for the 3θ Tangent Cubic 

Function.  Figure 40, developed through calculations expressed 

in Table 32, portrays an RST Spread, superimposed over the 3θ 

Cubic Function, whose S and T Terminology remains real only 

within the range 1cos1 +≤==≤− fzzθ . 

yzzz =−−− 4/)4/3(0 23 τ  
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Section 15.4 depicts an associated set of four identically 

shaped curves (Ref. Figure 41).  The last three depicted below 

were derived from the first, which typically depicts virtually 

any given, specific Generalized Cubic Function: 

DTRANSFORMEyzzz =+++ ''' 23 δγβ  [Ref. Section 14.2] 

DTRANSFORMEyzzz =−−+ 84.02.34.1 23  [Given Generalized Cubic Curve] 

''' 23
yzz =++ νσ  [Ref. Section 14.2.1] 

'768.3'4.3' 23
yzz =+−  [Associated Displaced Family Curve] 

'''''''' 33

2

3

3 yzzz =+++ θθθ δγβ  

''''3''3'' 23
yzzz =+−− ζζ  

''
3

6.1
''3''6.1''

23
yzzz =+−−  [Associated 3θ Cubic Curve] 

''''''''' 3

2

3

3 yzz =++ θθ νσ  

'''54133333.1'''4.3''' 23
yzz =+−  [Associated 3θ Displaced Family Curve] 

The above example applies portions of a Section 15.4 

derivation which indicates that the root structure for any 

given Generalized Cubic Function can be characterized, or 

reduplicated, by an associated RST Spread contained within a 

3θ Cubic Function of the same exact curve shape.  Hence RST 

Spreads, inherent within 3θ Cubic Functions characterize the 

root structures for all Generalized Cubic Functions. 

RST Spreads may qualify either as exact roots to certain 

equations, or as multiples thereof.  Examples follow: 
The respective roots for any given Characteristic Cubic Equation 

(Ref. Equation 31) are designated as actual R, S, and T Equation 

Sub-elements themselves (Ref. Section 11.2).  This is easily 

evidenced by virtue of the fact that:  

0))()(( =−−− TqSqRq  

In contrast, R, S, and T Equation Sub-elements also represent 

respective factors, as indicated above, to all Generalized Cubic 

Equation roots zR, zS, and zT (Ref. Section 11.3). 

SECTION 16  

Various functions are addressed which exhibit the exact same 

curve shape as the Perfect Cube Parent Function presented 

below, and hence belong to its family: 

3zy =  [Ref. Equation 47]  

Curves represented by the format expressed below fall within 

this family, or set of Cubic Curves , evidenced by the fact 

that they all exhibit a singular curve shape which matches 

that of the Perfect Cube Parent Function, no matter what value 

of ‘a’ is applied (Ref. Section 16.1): 
3)( azy ±=  
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Such family function 
3)( azy ±=  is deemed the Fundamental 

Symmetric Cubic Equation when 1=a  (Ref. Section 13.2). 

 

In Section 16.2:  

Setting 3/'' 2βγ =  when a3' ±=β  below gives: 

''' 23 δγβ +++= zzzy DTRANSFORME
 [Ref. Section 14.2] 

'
3

'
'

2
23 δ

β
β +++= zzz  

'
3

)3(
)3(

2
23 δ+

±
+±= z

a
zaz  

')(
3

9
)3(

33
2

23 δ+−±+±= aaz
a

zaz  

')33( 33223 δ+±+±= aazaazz m  

')( 33 δ+±= aaz m  
33 )(' azay DTRANSFORME ±=−± δ  

azay DTRANSFORME ±=−± '3 3 δ  

zaay DTRANSFORME =−± m3 3 'δ  

Since the Cubic Resolution approach presented in Section 13.2 

also applies for the specific case when 3/'' 2βγ = , it is analogous 

to the solution afforded above when 0=DTRANSFORMEy  as follows: 

aayz DTRANSFORME m3 3 'δ−±=  

)3/(')3/(03 3 βδβ m−±=  

)'27(3/1 3 3 δββ −+−=  

Section 16.3 portrays the following three family curves (Ref. 

Figure 42): 

3zy =  [Ref. Equation 47]  

3)( azy ±=  [Ref. first family curve] 

3)7( += z  [That is, 7+=+ a  or 7−=− a ] 

13.257)(y 3 +±= az  [Ref. second family curve] 

257.13)7(
3 ++= z  

Therein, a relativistic interpretation is applied to verify that 

all three curves are identically shaped. 

Section 16.4 presents two applications demonstrating: 

• When and how the equation zaay DTRANSFORME =−± m3 3 'δ  can be used 

• How specific values contained within the table expressed 

within Figure 42 can be obtained by applying a relativistic 

interpretation 
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SECTION 17  

Equation 48 represents a new significant linear relationship 

between tan θ and its associated )3tan( θζ =  function. 

ζθ )(tan
F

J
−=  [Ref. Equation 48] 

Section 17.1 gives its derivation such that factors F and J, 

shown below, represent manipulations of Characteristic Cubic 

Equation 31 coefficients: 

]3[2 BDF −=  

GDCBJ ±+−+= )1()(3  

Where, 

DCBCDBDBCDCBG 346616614)(9 222 −−+++−+++±=  

Section 17.2 determines yet another special case circumstance 

of the Generalized Cubic Equation, hereinafter to be known as 

the J-Function Cubic Expression (Ref. Equation 49) as follows: 

023 =+++ δγβα zzz  [Ref. Equation 32] 

 

0)()(3)3( 2223 =−−+
ξξ

F
FJ

F
JFJ  

[Ref. Equation 49] 

Such that when 1=α  and zJ = , by equating like terms: 

• 
3

β
=F  

• ξ
γ

=−
− 3

F  

• δ
ξ

=− 2)(
F

F  

Section 17.2 concludes by presenting brief examples of how the 

J-Function Cubic Expression may be applied. 

Section 17.3 shows that the J-Function Cubic Expression 

equates to the 3θ Cubic Function as follows: 

0)()(3)3( 2223 =−−+
ξξ

F
FJ

F
JFJ  

[Ref. Equation 49] 

Multiplying thru by 3)(
F

ζ
−  and substituting for Equation 48 renders:  

0)(3)(3)( 2233 =++−− ζ
ζζ

ζ
ζ

J
F

J
F

J
F

 

0]tan)/)[((3]tan)/[()(3]tan)/[()( 2233 =+−+−−−− ζθζ
ζ

θζ
ζ

ζθζ
ζ

F
F

F
F

F
F

  

0tan3tan3tan 23 =+−− ζθθζθ  

033 23 =+−− ζζ zzz  

Section 17.4 presents two methods in which Equation 49 can be 

used to determine respective values for )3tan( θζ =  and tan θ 

given their desired ratio. 
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SECTION 18 

Along with Equation 36, other equation formats now may be 

specified which link trigonometric values of an angle to those 

of one-third its size. 

Inherent coefficient structures provide a pathway for 

geometric construction which associates such two trigonometric 

entities. 

This is not the same thing as performing a Euclidean 

trisection because certain independent information which is 

contained within such coefficient structures also needs to be 

assessed, in addition to that which is directly associated 

with a given angle 3θ. 

Three equation type categories are afforded below which 

encompass variations in coefficient structures: 
1) Those comprised solely of rationally-based coefficients (Ref. 

Section 9.1); 

2) Those comprised solely of cubic irrational coefficients, or 
those which are not rationally-based (Ref. Section 9.1); and 

3) Those which contain a combination of coefficients fitting 
Category 1 and Category 2 descriptions. 

A brief list of salient equation formats which can be 

portrayed and, thereby further characterized by such geometric 

construction is as follows: 

• An Equation 1 Reduction (Ref. Equation 4) 

• The SUCTRE – A Quadratic Equation (Ref. Equation 30) 

• The Tan θ to ζ Linearity Expression (Ref. Equation 48) 

• Equations resulting when ζθ /1)3tan(/1 −=−=Rz  

• Complex Quadratic Equations for the Angle Trisector Triangle 

(Ref. Equation 50) 

• Equations emulated by the Cosine Circle 

Section 18.1 indicates that Equation 4 qualifies either as a 

Category 2 or Category 3 equation type format. 

0
2

cos)
6

52
(cos 

2 =−
−

+
λ

τ
θ

λ

τλ
θ  [Ref. Equation 4] 

Its coefficient values can become calculated once )3sin( φλ =  is 

determined from a given value of )3cos( θτ =  via the relationship: 

θ
φ

cos2

1
sin =  

The θcos  can be constructed geometrically via the Euclidean 

Mapping Process defined in Section 2.3. 

As such, Equation 1 can be reduced further.  Although present day 

conjecture is that such equation is irreducible, reduction 

becomes precipitated simply by supplying applicable irrational 

coefficients, as determined by mathematical calculation. 
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Section 18.2 demonstrates that the SUCTRE can exist either as 

a Category 1, Category 2, or Category 3 equation type. 

Its coefficients may be expressed in terms of ζ and arrangements 
of coefficients contained in the Characteristic Cubic Equation, 

as indicated below: 

)1(

)3(

)3(

+−=

−−=

+=

Dc

DBb

DCa

ζ

ζ
 

Hence, the SUCTRE becomes synonymous with the Quadratic 
Equation: 

0)1(tan)3(tan)3( 2 =+−−−+ DDBDC ζθθζ  [Ref. Equation 30] 

0
2 =++ cbxax  

Therefore, it too can be relegated to the geometric mapping 

process specified in Section 2.3. 

Section 18.3 determines that the tan θ to ζ Linearity 

Expression generally is depicted as a Category 2 equation 

type because its left-hand member is usually irrational. 

ζθ )(tan
F

J
−=  [Ref. Equation 48] 

It maps out a straight line of the form bmxy +=  such that: 

o The slope “m” is equal to –J/F and 

o The y-intercept ‘b’, is equal to zero 

Hence, θtan  becomes the resulting ordinate value for any and all 

x-axis values of ζ which may be represented on a straight line 
of slope –J/F which passes through the origin. 

Section 18.4 mentions that Generalized Cubic Equations which 

express α=1 qualify either as Category 1 or Category 3 
equation types, depending upon the nature of their remaining 

coefficients. 

Two specific sets of Generalized Cubic Equations are afforded 

along with their associated Quadratic Equation reductions.  

One set exhibits only coefficients which are rationally-based 

(Ref. Section 9.1), while the last two coefficients of the 

other set are determined to be completely cubic irrational.  

Both sets of equations are established by selecting a specific 

value of zR as follows: 

3

1

)3tan(

11
tantan −=−=−===

θζ
θθ RR Rz  

o

R 30)
3

1
arctan( −=−=θ  

TSR

o θθθθ ++=== 603arctan3  

TS

o θθ ++−= 30  

TS

o θθ +=90  

Hence, θS and θT are complementary to one another such that, 

T

S
θ

θ
tan

1
tan =  
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• When θS is selected specifically as 45
o, θT becomes 45

o 

also, such that: 

TSo

o
zz ==== 1

45tan

1
45tan  

Where, 

)/12()11/1()( ζζβ −−=++−−=++−= TSR zzz  

1/2)1(1)11)(/1()( +−=++−=++= ζζγ TSTSR zzzzz  

ζζδ /1)]1)(1)(/1([1 =−−=−= TSR zzz  

• When θS is selected as a specific cubic irrational value 
of 20o: 

363970234.020tan
1

tan

1
tan ===== o

TT

SS
z

z
θ

θ  

SS

TT
z

z
1

tan

1
tan ===

θ
θ  

Where, 

)/1
tan

1
(tan)

tan

1
tan/1()( ζ

θ
θ

θ
θζβ −+−=++−−=++−=

S

S

S

STSR zzz  

)
tan

1
(tan/11)

tan

1
(tan)

tan

1
(tan/1)(

S

S

S

S

S

STSTSR zzzzz
θ

θζ
θ

θ
θ

θζγ +−=++−=++=  

ζ
θ

θζδ /1)
tan

1
)()(tan/1((1 =−−=−=

S

STSR zzz  

The resulting compilation is given below:  

Category 1 Equation Type Sets Category 3 Equation Type Sets 

0
1

)
2

1()
1

2( 23 =+−+−−
ζζζ

zzz  0
1

)]
tan

1
)(tan

1
(1[)

1

tan

1
(tan 23 =++−+−+−

ζθ
θ

ζζθ
θ zzz

S

S

S

S
 

0577350269.0154700538.0422649731.1 23 =+−− zzz  0577350269.079639514.0534097385.2
23 =+−− zzz  

0)(2 =++− SRSR zzzzzz  

0
1

)
1

1(2 =−−−
ζζ

zz  

0)(2 =++− SRSR zzzzzz  

0
tan

)
1

(tan
2 =−−−

ζ

θ

ζ
θ S

S zz  

0577350269.042264973.0
2 =−− zz  021038312.0213380034.0

2 =−+ zz  

Both Category 1 and Category 3 reduced Quadratic Equations 

shown in the third row of the above table may be operated upon 

via the Euclidean Quadratic Mapping process of Section 2.3. 

Hence, a compass and straight edge operation can be applied 

without reservation upon given Quadratic Equations whose 

coefficients are either purely rationally-based lengths, or a 

combination thereof.  That’s because once cubic irrational 

lengths become specified as Quadratic Equation coefficients, 

their respective roots can be determined via Euclidean 

constructions based upon such presented lengths. 

Section 18.5 concerns itself with Angle Trisector Triangles 

that feature included angles of φα −  and φα +3  under specific 

circumstances when: 

αφ 3tantan =  
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They enable (Ref. Figure 43, triangle AEF): 

• Angles of φα −  to be geometrically constructed from given, 

or known angles of φα +3 , thereby permitting a geometric 

determination of constituent angles α , α3  and φ  

• Rationally-based and cubic irrational length combinations 

to coexist within single triangles 

• Mathematical association of such lengths via Complex 

Quadratic Equation 50, as depicted in two forms below: 

08)]3cos(2[ 22 =−+− rara φα  

0
8

]
4

)3cos(
[

2
2 =−

+
+

a
r

a
r

φα  
[Ref. Equation 50] 

As indicated, both forms exhibit first term coefficients with 

respective values of unity.  Hence, equations of either form 

cannot be depicted as Category 2 equation types. Examples for the 

remaining equation types are specified below:  

 

COEFFICIENTS 

a cos(3α+φ) 
A B C 

EQUATION TYPE: 0
2 =++ CBxAx  

For: rxABOVE =  

0
8

]
4

)3cos(
[

2
2 =−

+
+

a
r

a
r

φα  

r 
EQN. 

CAT. 

3  

(Rat.-based) 

 -23/12 (Rat.-

based) 

1 

 (R-B) 

4/)3cos( φα +a  

(Rat.-based) 

-a
2
/8  

(R-B) 
0

8

9

16

232 =−− rr  2  

(R-B) 
1 

3.454474499 

(Trans.) 

¾  

(Rat.-based) 

1 

 (R-B) 

4/)3cos( φα +a  

(Cubic irrational) 

-a
2
/8 

(Trans.) 
0491674258.1647713968.0

2 =−+ rr  
cos20

o
 

(Trans.) 
3 

sin20
o
  

(Trans.) 

 -10.807924 

(Trans.) 

1 

 (R-B) 

4/)3cos( φα +a  

(Cubic irrational) 

-a
2
/8 

(Trans.) 
0014622222.0924131976.0

2 =−− rr  
cos20

o
 

(Trans.) 
3 

3.839749597 

 (Trans.) 

 1/ cos20
o
 

(Trans.) 

1 

 (R-B) 

4/)3cos( φα +a  

(Cubic irrational) 

-a
2
/8 

(Trans.) 
0892959621.1021544043.1

2 =−+ rr  
cos20

o
 

(Trans.) 
3  

sin20
o
  

(Trans.) 

 -70.142803 

(Trans.) 

1 

 (R-B) 

4/)3cos( φα +a  

(Cubic irrational) 

-a
2
/8 

(Trans.) 
0014622222.0997562963.5

2 =−− rr  
6 

(R-B) 
3 

32 −  

(Rat.-based) 

-4.71403069 

(Trans.) 

1 

 (R-B) 

4/)3cos( φα +a  

(Cubic irrational) 

-a
2
/8 

(R-B) 
0

8

734
315780179.02 =

−
+− rr  sin20

o
 

(Trans.) 
3 

COEFFICIENTS 

r cos(3α+φ) 
A B C 

EQUATION TYPE: 0
2 =++ CBxAx  

For: axABOVE =  

08)]3cos(2[
22 =−+− rara φα  

a 
EQN. 

CAT. 

2  

(R-B) 

 -23/12  

(Rat.-based) 

1 

 (R-B) 

)3cos(2 φα +− r  

(Rat.-based) 

-8r
2
  

(R-B) 
032

3

232 =−+ aa  3 

(Rat.-based) 
1 

cos20
o
 

(Trans.) 

3/4  

 (Rat.-based) 

1 

 (R-B) 

)3cos(2 φα +− r  

(Cubic irrational) 

-8r
2
 

(Trans.) 
0064177772.7409538961.1

2 =−− aa  
3.454474499 

 (Trans.) 
3 

cos20
o
 

(Trans.) 

 -10.807924 

(Trans.) 

1 

 (R-B) 

)3cos(2 φα +− r  

(Cubic irrational) 

-8r
2
 

(Trans.) 
0064177772.731225391.20

2 =−+ aa  
sin20

o
  

(Trans.) 
3 

cos20
o
 

(Trans.) 

1/ cos20
o
 

(Trans.) 

1 

 (R-B) 

)3cos(2 φα +− r  

(Rat.-based) 

-8r
2
 

(Trans.) 
0064177772.72

2 =−− aa  
3.839749597 

(Trans.) 
3 

6 

(R-B) 

 -70.142803 

(Trans.) 

1 

 (R-B) 

)3cos(2 φα +− r  

(Cubic irrational) 

-8r
2
  

 (R-B) 
02887136472.841

2 =−+ aa  
sin20

o
  

(Trans.) 
3 

sin20
o
  

(Trans.) 

-4.71403069 

(Trans.) 

1  

(R-B) 

)3cos(2 φα +− r  

(Cubic irrational) 

-8r
2
 

(Trans.) 

0935822227.0224586908.3
2 =−+ aa

 

32 −  

(Rat.-based) 
3 
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Equation equality is preserved when the sum of the three terms 

in Equation 50 equals zero.  As demonstrated in the two 

additional tables shown below, this can be achieved only when 

either: 

• All three terms are rationally based 

• All three terms are cubic irrational 

• Two of the terms are cubic irrational such that they sum 

to the value of a rationally-based third term 

TERMS 

r 

EQUATION TYPE: 02 =++ CBxAx  

For rxABOVE = : 

0
8

]
4

)3cos(
[

2
2 =−

+
+

a
r

a
r

φα  
Ax

2
 Bx C 

2 

(Rat.-based) 
0

8

9

16

232 =−− rr  4 

(Rat.-based) 

 -23/8 

(Rat.-based) 

-9/8 

(Rat.-based) 

cos20
o
 

(Cubic irrational) 
0491674258.1647713968.0

2 =−+ rr  
0.883022221 

(Cubic irrational) 

0.608652026 

(Cubic irrational) 

-1.491674258 

(Cubic irrational) 

cos20
o
  

(Cubic irrational) 
0014622222.0924131976.0

2 =−− rr  
0.883022221 

(Cubic irrational) 

 -0.868399998 

(Cubic irrational) 

-0.014622222 

(Cubic irrational) 

cos20
o
  

(Cubic irrational) 
0892959621.1021544043.1

2 =−+ rr  
0.883022221 

(Cubic irrational) 

 +0.959937399 

(Cubic irrational) 

-1.892959621 

(Cubic irrational) 

6 

(Rat.-based) 
0014622222.0997562963.5

2 =−− rr  
36 

(Rat.-based) 

 -35.98537778 

(Cubic irrational) 

-0.014622222 

(Cubic irrational) 

sin20
o
 

(Cubic irrational) 
0

8

734
315780179.02 =

−
+− rr  0.116977778 

(Cubic irrational) 

-0.108003182 

(Cubic irrational) 

-0.008974596  

(Rat.-based) 

 

TERMS 

a 

EQUATION TYPE: 02 =++ CBxAx  

For: axABOVE =  

08)]3cos(2[ 22 =−+− rara φα  

Ax
2
 Bx C 

3 

(Rat.-based) 
032

3

232 =−+ aa  9 

(Rat.-based) 

23 

(Rat.-based) 

-32 

(Rat.-based) 

3.454474499 

(Cubic irrational) 
0064177772.7409538961.1

2 =−− aa  
11.93339406 

(Cubic irrational) 

-4.869216396 

(Cubic irrational) 

-7.064177772 

(Cubic irrational) 

sin20
o
 

(Cubic irrational) 
0064177772.731225391.20

2 =−+ aa  
0.116977778 

(Cubic irrational) 

6.947199994 

(Cubic irrational) 

-7.064177772 

(Cubic irrational) 

3.839749597 

(Cubic irrational) 
0064177772.72

2 =−− aa  
14.74367697 

(Cubic irrational) 

-7.679499194 

(Cubic irrational) 

-7.064177772 

(Cubic irrational) 

sin20
o
 

(Cubic irrational) 
02887136472.841

2 =−+ aa  
0.116977778 

(Cubic irrational) 

287.8830223 

(Cubic irrational) 

-288 

(Rat.-based) 

32 −  

(Rat.-based) 
0935822227.0224586908.3

2 =−+ aa  
0.071796769 

(Rat.-based) 

0.864025456 

(Cubic irrational) 

-0.935822227 

(Cubic irrational) 

Section 18.5 affords a numerical example for: 
o4335543.1193 =+ φα  

Side aEA ='  is of rationally-based length 2/3   

Its other two sides are to be expressed by the 

following two cubic irrational lengths: 

363970234.020tan === o
rFE  

091910703.120tan33' === o
rFA  [Ref. Figure 43]: 
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Hence, a cubic irrational number pair may be determined from 

another completely independent cubic irrational number, such as 

cos )3( φα + , in consonance with a given rationally-based number, 

such as 2/3 . 

Figure 44 depicts a geometric construction of the cubic 

irrational length 363970234.020tan == o
r .  Such length was 

geometrically constructed using the Euclidean mapping process 

specified in Section 2.3, and is premised upon the coefficients 

for Equation 50 reiterated below: 

08)3cos(2 22 =−+− rara φα  [Ref. Equation 50] 

0)3cos(168 22 =+++− rraa φα  

08)3cos(16 22 =−++ arar φα  

0
32

3
20tan)106394226.0(20tan 2 =−− oo   

Figure 45 and Figure 46 demonstrate additional geometric 

construction that is considered necessary in order to achieve the 

above rendering. 

In conclusion, it is contended that cubic irrational numbers, or 

cubic irrational lengths, appear as pairs or conjugates in 

Complex Quadratic Equations where one may be determined via 

the other. 

Section 18.6 portrays the Cosine Circle, a novel geometric 

construction which locates root sets by a simple two step 

process which consists of 
1) Rotating an inscribed equilateral triangle about its origin 
until its vertices align with designated angle sets of θ , 

o
120+θ , and o240+θ  (Ref. Figure 47); and 

2) Dropping perpendiculars about select points. 
The Cosine Circle applies to the following equation formats: 

)3cos(
4

1
cos

4

3
cos

3 θθθ +=  [Ref. Equation 1] 

With roots (Ref. Section 2.4.1): 

)240cos( x

)120cos(x

cx

o

3

2

1

+=

+=

=

θ

θ

θ
o

os
 

)3sin(
4

1
sin

4

3
sin

3 θθθ −=  [Ref. Equation 2] 

With roots (Ref. Section 2.4.2): 

)240(s y

)120sin(y

siny

o

3

2

1

+=

+=

=

θ

θ

θ

in

o  

)tan31)(3tan(tan3tan 23 θθθθ −−=  [Ref. Equation 3] 

With roots (Ref. Section 2.4.3): 
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)240(tan z

)120tan(z

tanz

o

3

2

1

+=

+=

=

θ

θ

θ
o  

Such roots may be applied in orderly fashion via geometric 

construction in order to determine their respective 3θ 
trigonometric counterparts as defined below: 

4

)3cos(
 xxx 321

θ
=  [Ref. Equation 5] 

 

0 xxx 321 =++  [Ref. Equation 6] 
 

4

3
-  xx  xx+ xx 323121 =+  [Ref. Equation 7] 

 

4

)3sin(
 yyy 321

θ
−=  [Ref. Equation 8] 

 

0 yyy 321 =++  [Ref. Equation 9]] 
 

4/3- y y y y+ yy 323121 =+  [Ref. Equation 10] 
 

)an(3 zzz 321 θt−=  [Ref. Equation 11] 
 

ζ3321 =++ zzz  [Ref. Equation 12] 
 

3 zz  zz  zz 323121 −=++  [Ref. Equation 13] 

Examples of Cosine Circle supporting equations can be found for 

each of the category equation types enumerated above.  

For instance, it is shown that the following equation can qualify 

as a Category 1 Equation Type when each of its coefficients is 

considered to encompass, or equal the value of its entire 

respective term, under the specific condition when o453 =θ : 

0 xxx 321 =++  [Ref. Equation 6] 

0 )240(c)120(cc =++++ oo
ososos θθθ  

0
232

1

232

13

2

23
=

+
−

+

+
−

+  

Hence, each entire respective term is rationally-based in 

itself.  Once each is considered to be that term’s 

coefficient, the equality is verified to hold as follows: 

0
232

1)13()23(
=

+

−+−+  

00 =  

In Section 18 above, many instances are afforded whereby 

rationally-based and cubic irrational lengths, evident within 

Quadratic Equations, are portrayed geometrically. 

 

The Quadratic Formula solely is responsible for this!  It 

serves as a known bastion or so-called last frontier that can 

be used to properly interrelate two completely independent 

branches of mathematics – namely, algebra and geometry!  

 



 

 37 

SECTION 19  

Two forms of the Generalized Cubic Equation (GCE) are the: 

1) 3θ Cubic Equation 033 23 =+−− ζζ zzz , now to be described 

herein as a primary GCE; and 

2) Those whose “R” values are equal to unity, now to be 
described as secondary, independent GCE’s. 

 

A simultaneous resolution is considered to occur when pairs of 

such types of Generalized Cubic Equations become algebraically 

manipulated with respect to a common root zR which they both 

are considered to share. 

Quadratic Equation reductions result, which thereafter can be 

charted via the geometric mapping process stipulated in 

Section 2.3.   

Such primary GCE is of particular value because: 

• Its coefficients are either known rational values of unity 

and -3, or discernable in terms of any postulated value of 

)3tan( θζ =  

• Its root θθθ tantan)1(tan)( === RzR
 

 

Such second, independent Generalized Cubic Equation, one which 

possesses the very same common root θtan=Rz , then simply is to 

retain the same coefficient structure as the GCE itself, stipulated 

as follows: 

0)1( 23 =+++ δγβ zzz  [Ref. Equation 32] 

A mathematical substitution becomes possible since both above 

equations share a common root zR whereby such primary GCE can be 

reformatted as: 

033
23

=+−− ζζ RRR zzz  

ζζ −+= RRR zzz 33
23  

Substitution from above into such second, independent 

Cubic Equation renders the reduced Quadratic 

Equation: 

0)33(
22

=+++−+ δγβζζ RRRR zzzz  

0)()3()3( R

2

R =−++++ ζδγβζ zz  
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Now, since, 

θθθ 2=+ TS
 

)2tan()tan( θθθ =+ TS
 

θ

θ

θθ

θθ
2tan1

tan2

tantan1

tantan

−
=

−

+

TS

TS  

2
1

2

1
R

R

TS

TS

z

z

zz

zz

−
=

−

+  

)1(2)1)((
2

TSRRTS zzzzzz −=−+  

δ22)1)((
2

+=−+ RRTS zzzz  

)1)((22
2

−++=− RTSR zzzzδ  

)1)((2
2

−+−= RRR zzz β  

)1()3(
23

−−−= RRR zzz β  

 

Such that, 

γ

βδ
ζ

−

−
=

1
 [Ref. Equation 36] 

βδγζ −=− )1(  

)1( γζβδ −−−=−  

)1(222 γζβδ −−−=−  

Via substitution, 

)1()3()1(22
23

−−−=−−− RRR zzz βγζβ  

)1()3(2)1(2
23

−+−−=+− RRR zzz ββγζ  

)1()31(222
22

−+−−=+− RR zz βζβζγζ  
2

)3(323 Rzβζβζγζ +=+−  
2

)3(2)(3 Rzβζζγβζ +=−+  

The above right-hand term has exactly the same value as the 

first term of the left-hand member listed in Generalized Cubic 

Equation reduction shown above and restated below: 

0)()3()3( 2 =−++++ ζδγβζ zz  

Substitution renders: 

0)()3(2)(3 =−+++−+ ζδγζγβζ Rz  

)()(32)3( ζδβζζγγ −−+−=+ Rz  

γ

ζγββζζγ

+

−−+−
=

3

)()(32
Rz  

Therefore, the Coefficient Structure of a Second, Independent 

GCE for R=1 is as follows: 

γ

βγζ

+

−−
=

3

4)1(3
Rz  

[Ref. Equation 51] 

The entire process of simultaneously resolving GCE pairs 

which are linked by their common root θθθ tantan)1(tan)( === RzR
 

consists of: 
1) Identifying an angle 3θ for analysis; 
2) Geometrically constructing its tangent )3tan( θζ = ; 

3) Specifying its 3θ Cubic Equation; and lastly 
4) Specifying an associated second, independent GCE. 
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Respective coefficients of such second, independent GCE can be 

determined in accordance with Equation 51 as follows: 

γ

βγζ

+

−−
=

3

4)1(3
Rz  

[Ref. Equation 51] 

1) θtan=Rz  is calculated trigonometrically from )3tan( θζ =  

2) A designated value of β becomes arbitrarily assigned  
3) Coefficient γ  then becomes readily calculated  
4) Remaining coefficient δ becomes calculated via Equation 

36 as follows: 

γ

βδ
ζ

−

−
=

1
 [Ref. Equation 36] 

δβγζ =+− )1(  

Above a singular value for the unknown coefficient γ  is readily 
obtained by first ascribing properly associated )3tan( θζ =  and 

θtan=Rz  trigonometric values, and thereafter assigning an 

arbitrary value to β.  

However, when not relying upon the fact that θtan=Rz  can be 

trigonometrically determined from )3tan( θζ = , such common root 

value instead must be ascertained from the two remaining unknown 

values β and γ (Ref. Equation 51). 

This can be accomplished only when such correct singular value of 

γ  becomes interposed into Equation 51 with respect to each and 
every specific value of )3tan( θζ =  and arbitrarily assigned value 

of β which also become applied to it.  

Unfortunately, in most cases, without having advance knowledge of 

such θtan=Rz  to )3tan( θζ =  trigonometric relationship, it becomes 

impossible to distinguish the proper value of γ  that should 
become inserted in the first place. 

In other words, γ  then would become distinguishable by Equation 
51 only after properly associated values of ζ and the unknown 
common root zR, along with an arbitrarily assigned value of β  

first become disclosed.  

• More specifically restated:  

Aforehand knowledge of such common root value zR, would be 

needed in order to enable determination of the respective 

values of coefficients which belong to, or fully 

characterize such coterie of second, independent GCE’s 

• Even more fully explained: 

A second, independent GCE, considered to be a Cubic 

Equation whose coefficients could be fed into the algebraic 

linear Equation 51 for purposes of obtaining a common root 

value zR that, in turn, could be operated upon via geometric 

construction in order to produce a trisected angle θ, 

cannot be determined without having aforehand knowledge of 

such common root value zR in the first place 
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Such preponderance poses an insurmountable difficulty or 

unfathomable discontinuity for the Euclidean process which must 

be told exactly which coefficient values are to applied in order 

to geometrically construct a common root zR. 

Therefore, it is concluded that when a coefficient structure for 

a second, independent GCE: 

1) Can be determined without gaining aforehand knowledge of the 
value of its common root zR, then such equation can be used 

to reduce its associated 3θ Cubic Equation into quadratic 

form, thereby enabling a simultaneous resolution via the 

geometric mapping process specified in Section 2.3; which in 

turn enables the depiction of an angle θ which represents a 

bonafide trisector for any given, or assigned angle 3θ (Ref. 

Section 20); or 

2) Cannot be determined without gaining aforehand knowledge of 
the value of its common root zR, then such equation cannot be 

fed into linear Equation 51 for purposes of obtaining a 

common root value zR that, in turn, could have been operated 

upon via geometric construction in order to produce a 

trisected angle θ. 

This second above premise is demonstrated for the case when 

the common root zR and )3tan( θζ =  are both rational as follows; 

Where, 

9

13
)3tan( == θζ  

o
30484647.553 =θ  

o
43494882.18=θ  

3

1
tan == θRz  

The resulting 3θ Cubic Equation is as follows: 

033
23

=+−− ζζ RRR zzz  

09/133)9/13(3
23

=+−− RRR zzz  

09/133)3/13(
23

=+−− RRR zzz  

As such, it becomes obvious that: 

• The coefficients contained in the 3θ Cubic Equation 

presented above, in addition to the value of 9/13)3tan( == θζ , 

all represent rational lengths and, hence, can be 

geometrically constructed simply by means of applying a 

straightedge and compass alone. 

This is because they all stem from any given or assigned 

length of unity (Ref. Section 9.1). 

• The common root value 3/1tan == θRz  also is a rational length; 

whereby, portrayal of the trisected angle θ, in this 

particular case, also rather easily could be produced via 

geometric construction using only Euclidean tools. 

However, no geometric construction method exists which can 

determine 3/1=Rz  when only a known value of 9/13)3tan( == θζ  is 
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supplied or given in the first place; thereby thwarting any 

attempts to perform Euclidean trisection. 

By introduction of Equation 51, such above stated impossibility 

is explained mathematically as follows: 

γ

βγζ

+

−−
=

3

4)1(3
Rz  

[Ref. Equation 51] 

γ

βγ

+

−−
=

3

)
3

3
(4)1)(

9

13
(3

3

1  

βγγ 12)1(133 −−=+  

For the specific case when 0=β : 

)0(12)1(133 −−=+ γγ  

13133 −=+ γγ  

γ1216 =  

γ=3/4  

βγζδ +−= )1(  

0]
3

4
)

3

3
(1[

9

13
+−=  

)
3

1
(

9

13
−=  

27/13−=  

As such, one bonafide second independent GCE for 1== αR  is: 

023 =+++ δγβα zzz  [Ref. Equation 32] 

0
27

13

3

43 =−+ zz  

However, the above determination could not have been rendered 

without first having received aforehand knowledge of the common 

rational common root value 3/1=Rz .  

Quite obviously, this algebraic approach is not permitted when 

attempting to trisect an angle via Euclidean means! 

Equation 51 may be applied in a variety of ways. For instance: 

• It validates the 3θ Cubic Equation by substituting the value of 

its third term coefficient 3−=γ  into Equation 51 as follows: 

γ

βγζ

+

−−
=

3

4)1(3
Rz  [Ref. Equation 51] 

βγζγ 4)1(3)3( −−=+Rz  

βζ 4)13(3)33( −−−=−Rz  

βζ 4)4(30 −−=  

)4(34 −= ζβ  

ζβ 3−=  

From above: 

δβγζ =+− )1(  

δζζ =−−− 3)]3(1[  

δζ =   
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Hence, such Generalized Cubic Equation when 1=α  reduces to 

the 3θ Cubic Equation as follows: 

023 =+++ δγβα zzz  [Ref. Equation 32] 

033
23

=+−− δζ RRR zzz  Q.E.D. 

• It validates that Generalized Cubic Equations whose sub-

element 1=R  contain a root whose value is equal to the 

negative of its β coefficient when 1+=γ  as follows: 

βγζγ 4)1(3)3( −−=+Rz  

βζ 4)11(3)13( −−=+Rz  

β−=Rz  

Another second independent GCE for 1=R  example is featured 
below to emphasize that knowledge of the common root value zR 

is needed aforehand in order to characterize its respective 

coefficient structure.  Given that: 

θθ =R
 

o

S 45+= θθ  
o

T 45−= θθ  

θθθθ 3=++=Σ TSR
 

Such that, 

θθ tantan == RRz  

θ

θ
θθ

tan1

1tan
)45tan(tan

−

+
=+== o

SSz  

θ

θ
θθ

tan1

1tan
)45tan(tan

+

−
=−== o

TTz  

Where, 

)( TSR zzz ++−=β  

TSTSR zzzzz ++= )(γ  

TSR zzz−=δ  

Therefore, the second independent GCE for 1=R  and 1=α  is 

determined to be: 

023 =+++ δγβα zzz  [Ref. Equation 32] 

0
23

=+++ δγβ RRR zzz  

0tan]1)
tan1

tan4
([tan)

tan1

tantan5
(

2

2

2

3
3

=+−
−

+
−

−
− θ

θ

θ
θ

θ

θθ
RRR zzz  

Clearly, all the coefficients enumerated above are represented as 

functions of the common root θtan=Rz .  Hence, the coefficient 

values of such Generalized Cubic Equation cannot be determined 
without having aforehand knowledge of its root zR. 

Even when three roots and all coefficients belonging to a 

second, independent GCE for 1=R  can be geometrically 

constructed, trisecting an associated given 3θ angle still 

remains intractable.  An example of this is provided below: 
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3/1tantan −=== RR Rz θθ  

1tantan === SS Sz θθ  

1tantan === TT Tz θθ  

o

R 30−=θ  
o

S 45=θ  

o

T 45=θ  

o603 ==Σ θ  

)3tan( θζ =  

3=  

3/60o=θ  
o20=  

363970234.0tan =θ  

For 1=α : 

)( TSR zzz ++−=β  

)11
3

1
( ++−−=  

422649731.1−=  

TSTSR zzzzz ++= )(γ  

)1)(1()11(
3

1
++−=  

154700538.0−=  

TSR zzz−=δ  

)1)(1)(
3

1
(−−=  

577350269.0=  

Then,  

023 =+++ δγβα zzz  [Ref. Equation 32] 

0577350269.0154700538.0422649731.1
23 =+−− zzz  

All above determined coefficients can be constructed via 

Euclidean means since they all are rationally-based (Ref. Section 

9.1); that is, they represent mathematical combinations of the 

associated GCE root structure consisting of 1, 1, and 3/1− . 

However, such associated GCE contains no roots in common with its 

respective 3θ Cubic Equation.  Hence, 1≠R  and such resulting 

equation cannot qualify as a second, independent GCE for 1=R .  

This is evidenced by the root structure for each presented below: 

3θ Cubic Equation Roots Associated GCE Roots 

363970234.0tantan1 === θθ Rz  

839099631.0)120tan(tan2 −=+== o

Sz θθ

67128182.5)240tan(tan3 =+== o

Tz θθ  

3/1tan −== θRzR
 

1tan == θSzS
 

1tan == θTzT
 

Above, associated GCE roots are represented as Complex Linear 

Equations expressing θtan  and respective values of R, S, and T; 

all unknown terms that cannot be deciphered by Euclidean means. 

This means that many values of R, for example, can be arbitrarily 

introduced, such that compensating values of θtan  must equal 

)3/(1 R− .  Moreover, only one unknown value of -1.586256828 for R 

correctly determines 363970234.0tan =θ . 
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Using the information provided above, an example simultaneous 

reduction of a 3θ Cubic Equation with its second, independent 

GCE for 1=R  is afforded as follows: 

0tan]1)
tan1

tan4
([tan)

tan1

tantan5
(

2

2

2

3
3

=+−
−

+
−

−
− θ

θ

θ
θ

θ

θθ
RRR zzz  

For the particular condition when, 
o603 =θ  

o
20=θ  

363970234.0tan == θRz  

033
23

=+−− ζζ RRR zzz  [3θ Cubic Equation] 

0)60(tan3)60(tan3
23

=+−− o

RR

o

R zzz  

03333
23

=+−− RRR zzz  

3333
23

−+= RRR zzz  

The coefficients for a second, independent GCE for 1=R  become: 

042169497.2)
tan1

tantan5
(

2

3

−=
−

−
−=

θ

θθ
β  [Established above] 

389185421.01)
tan1

tan4
(tan

2
−=−

−
=

θ

θ
θγ  [Established above] 

363970234.0tan == θδ  [Established above] 

Hence, this particular associated second, independent GCE for 

1=R  and 1=α  is: 

023 =+++ δγβα zzz  [Ref. Equation 32] 

0363970234.0389185421.0042169497.2
23 =+−− zzz  

Check, 

γ

βδ
ζ

−

−
=

1
 [Ref. Equation 36] 

)389185421.0(1

)042169497.2(363970234.0

−−

−−
=  

389185421.1

406139731.2
=  

360tan =o  

From the simplified quadratic equation determined in 

the derivation of Equation 51: 

0)()3()3( R

2

R =−++++ ζδγβζ zz  

0)3363970234.0()389185421.03()042169497.233( R

2

R =−+−+− zz  

0368080573.1610814579.2153982926.3 R

2

R =−+ zz  

The resulting resolution follows: 

)4(
2

1
; 2

21 acbb
a

zz −±−=  

])368080573.1)(153982926.3(4)610814579.2(610814579.2[
)153982926.3(2

1 2 +±−=  

191753593.1;363970234.0 −=  

o

o

40tan

1
;20tan −=  

)2tan(

1
;tan

θ
θ −=  
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In summary, Equation 51 depicts a remarkable portrayal of the 

very manner in which an unknown common root zR manifests 

itself via inextricable linkage to modifying coefficients. 

Other well known equation formats which relate root structures 

to their coefficients are as indicated below: 

• The Quadratic Formula relates its roots to respective 

coefficients via the Quadratic Formula as follows: 

Where 0
2 =++ cbxax , 

a

acbb

2

4
x;x

2

21

−±−
=  

• The Generalized Cubic Equation relates its roots to 

respective coefficients as follows when αγβ 32 =  and 1=α : 

3

273 3 δββ −+−
=Rz  [Ref. Section 13.2] 

In conclusion, such associations between equation 

coefficients and their intrinsic root structures are best 

characterized by mathematical interpretations of their 

inherent RST Spreads. 

 

Section 20 

To reiterate what clearly has been asserted many times over 

during the past years: An angle most certainly cannot be 

trisected solely via Euclidean means! More specifically 

stated, that is to say it is impossible to trisect an angle, 

no matter what its size, when only a straightedge and compass 

are permitted to act upon it.  

In response to the caveat that certain angles can be 

trisected, let it be said that such actions cannot be achieved 

solely by Euclidean means, but only when otherwise introducing 

extraneous information into such famous trisection problem, 

thereby corrupting it and, in so doing, enabling entirely 

different problem types to become solved.  

In this sense, extraneous information is considered to entail 

any aforehand knowledge which can be derived from either 

algebraic determinations, or geometric applications other than 

those where a straightedge and compass become applied to an 

angle of given magnitude. 

Section 20.1 examines an instance when Equation 51 becomes 

invoked for the condition when 0== γβ .   

In this case, the calculations provided below reveal that the 

tangent value (zR) of a particular trisector is equal to the 

negative value of the tangent(- ζ ) of an angle that amounts to 

exactly three times its size:  
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γ

βγζ

+

−−
=

3

4)1(3
Rz

 
[Ref. Equation 51] 

03

)0(4)10(3

+

−−
=

ζ  

ζ−=  

θθθ
θ

θθ
tantan)1(tan)

tan31

tantan3
(

2

3

===
−

−
−= RzR

 [Ref. Equation 3] 

Cross multiplication yields a reduced Quadratic Equation whose 

unknown, tan θ, may be resolved via Euclidean mapping process 

stipulated in Section 2.3, mathematically portrayed as follows: 

)1tan3(tan)tan3(tan 22 −=− θθθθ  

1tan3)tan3 22 −=− θθ  

θ2tan1 =  

θtan1 =±  

21 arctan;arctan)1arctan();1arctan( θθ=−+  

21;135;45 θθ=oo  

21 3;3)135(3);45(3 θθ=oo  

21 3;3405;135 θθ=oo  

21;)36045tan(;135tan ζζ=+ oo  

ζ=1m  

Rz=−=± ζ1  

Since both such common root zR = ±1, and 1=)θ3tan(=ζ m  exhibit 

rationally-based tangent values, the  angle θ then could be 
drawn to represent a true trisector of a given angle 3θ whose 
magnitude would be either 135o, or 405o = (360o + 45o) = 45o.  

However, such geometric construct would not constitute an act 

of trisecting an angle solely by the use of a straightedge 

and compass. 

Section 20.2 commissions a 1994 never before published 

copyright which, although today appears to be of rather 

innocuous intent, still apparently manages to be the first on 

record to articulate an ability to achieve bonafide Euclidean 

trisection predicated upon a method of repeated bisections.   

Therein, a series of bisections contrived purely of compass and 

straightedge operations is applied in to achieve such actual 

trisection of a given angle 3θ. 

Unfortunately it requires an infinite number of iterations to 

produce an exact solution.  However, after twenty of such 

iterations, a precision of better than one in a million would be 

obtained (Ref. Table 34). 

Perhaps this method has received very little attention over the 

years because it doesn’t render an immediate solution.  Or, 

quite possibly, it just never was considered before, as it 



 

 47 

relates to the mathematics which governs geometric progression, 

also presented below. 

Denoted as “s”, the sum of an infinite number of terms expressed 

in a geometric progression, or series of terms connected by a 

constant multiplier, is: 

m

f
s

−
=

1
 (Ref. second footnote of Section 20) 

Where 

o “f” represents its first term  

o “m” represents a common ratio between its terms 

When its first term is equal to 3θ, and m is set equal to -1/2, 

“s” is found to be equal to 2θ as follows: 

θ
θ

2
)2/1(1

3
=

−−
=s  

Since an angle 2θ can be bisected to produce one of θ, this 

above analysis evidences that any given angle 3θ can be 
trisected by a series of Euclidean bisections conducted in the 

sequence specified in Figure 48. 

A geometric progression consisting of “n” terms is determined by 

constantly multiplying each successive term by -1/2 as follows: 

1-n2-n
2

 3
 - 

2

 3
 

8

 3
 -  

4

 3

2

 3
 - 3s

θθθθθ
θ ++=  

Each of these above designated terms is located within the 

circle illustrated in Figure 48.  They represent swings of 

specified angles from a given start point where counterclockwise 

movement is notated by a positive swing.  The location of each 

respective end point is identified outside of the circle.  Each 

location represents a summation of the above specified geometric 

progression for the quantity of terms being depicted.  Such 

respective calculations are afforded in Table 34. 

Section 20.2 examines the nuances associated with attempting 

to geometrically construct Equation 1, as denoted below (Ref. 

Figure 49): 

cos3θ = ¾ cosθ + ¼ cos(3θ)  [Ref. Equation 1] 
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SECTION 21 

This section investigates the role which cube roots play in 

attempting the impossible act of performing Euclidean 

trisection.  The discussion begins by affirming that root set 

values belonging to Quadratic Equations of the form 

0=c+bx+ax2  can be algebraically determined solely from their 

coefficient structures through the Quadratic Formula shown 

below, and furthermore attesting to the fact that they can be 

geometrically constructed by means of performing the Euclidean 

mapping procedure stipulated in Section 2.3; whereby the 

values of their coefficients would become represented by 

lengths of given size. 

a2
ac4-b±b-

=x;x
2

21  

Such digression continues by noting that some mathematicians, 

upon becoming inspired by such coefficient driven realization, 

naturally might try to identify some hidden, unknown 

inextricable geometric linkage that could associate solely 

rational coefficients inherent within Generalized Cubic 

Equation formats to their intrinsic cubic irrational root set 

counterparts.   

 

This all leads up to the stated possibility that such type of 

breakthrough might even unlock the mystery of how to divide a 

given angle of unknown size into three equal parts when 

acting upon it only by means of applying a straightedge and 

compass; thereby accomplishing the impossible feat of 

Euclidean trisection. 

 

Naturally, on method which could be applied in order to 

achieve such goal would entail attempting to geometrically 

construct cube roots.  In this regard, the association that 

Equation sub-element theory bears upon such cube roots 

phenomenon is presented below wherein, as algebraic 

interpretations become supplied, they obviously would become 

disqualified as methods which could accomplish such Euclidean 

trisection feat. 

 

a) Explaining why attempting to geometrically 
construct cube roots is synonymous with 

trisection, and therefore cannot be achieved 

solely by Euclidean means: 

With regard to the factor )ω2cos( , as contained 

in the variable l of the Cubic Resolution 

Transform (CRT) presented below, an association 



 

 49 

with cube roots can be established as follows 

(Ref. Section 13.3): 

0
22

3 3
23 =
















±

ψψ

l
m

l
ff  [Ref. Equation 38] 

Such that 

)2cos(2 ωf=l  [Ref. Figure 11] 

Where the formula for a Binomial Expansion of 

the cube of the polynomial BA ±  is as follows: 
32233 33)( BABBAABA ±+±=±  

For the specific circumstance when: 

)2cos( ω=A  

)2sin( ωiB =  
32233 )]2sin([)]2sin()][2[cos(3)]2sin([)]2[cos(3)]2[cos()( ωωωωωω iiiBA ±+±=±  

)2(sin)]2(cos1)][2[cos(3)]2sin()][2(sin1[3)2(cos 3223 ωωωωωω ii m−−−±=  

)]2(sin4)2sin(3[)]2cos(3)2(cos4[ 33 ωωωω −±−= i  

)6sin()6cos( ωω i±=  

Taking the cube root of each side affords: 

3 )6sin()6cos()2sin()2cos( ωωωω iiBA +=+=+  

3 )6sin()6cos()2sin()2cos( ωωωω iiBA −=−=−  

 

Such that by summing the two above equations, 

  33 )ω6sin(i)ω6cos(+)ω6sin(i+)ω6cos(=)ω2cos(2  

 

Now, upon letting ψ  represent )6cos( ω , the 

following equality can be established, 

          1=)ω6(sin+)ω6(cos 22  

           1=)ω6(sin+ψ 22  

                 21)6sin( ψω −=  

 

Then, by substituting this result into the 

equation above, it can be shown that, 

3 23 2 ψ-1i-ψ+ψ-1i+ψ=)ω2cos(2  

3 23 2 )1)(1()1)(1( −−−+−−+= ψψψψ ii

3 223 22 )1)1 −−+−+= ψψψψ ii  

3 23 2 )1)1 −++−−= ψψψψ  
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Since real values for ψ  exist within the range 

from -1 to +1, then the radical 12 −ψ  must be 

imaginary or equal to zero. Hence, except for 

such latter case, each of the terms appearing 

under the two cube root radicals indicated 

above must be complex numbers.  Now, since 

taking the cube root of a complex number is 

synonymous with representing its trisector in a 

Cartesian Coordinate System, it would appear to 

be impossible to geometrically construct it 

solely by Euclidean means.  

 

b) Showing how cube roots can be eliminated 
through algebraic manipulation: 

Except for certain very rare instances (Ref. 

Section 20), an unknown quantity z may be 

represented as the negative cube root of the 

summation of second, third and fourth terms of 

a given Generalized Cubic Equation for 1=α  

that becomes mathematically reorganized as 

follows: 

023 =+++ δγβα zzz  [Ref. Equation 32] 

 0=δ+zγ+zβ+z 23  

δγβ −−−= zzz 23
 

 )δ+zγ+zβ-1)((= 2  

 )δ+zγ+zβ(-1)(= 23  

 3 2 δγβ ++−= zzz  

Since such 2nd and 3rd terms include the unknown 

root, z, its value is required aforehand in order 

to determine the value of the left-hand side of 

the above equation.  Hence, such algebraic 

relationship cannot contribute towards attempting 

to trisect an angle solely by Euclidean means 

(Ref. Section 19). 

1) For rational values of zR and ζ when R=1 and 
β=0: 

Interposing rational values of θtan=Rz  and 

)3tan( θζ =  into the 3θ Cubic Equation enables 

results to be obtained which thereafter could 

be geometrically constructed, as based upon 

such input.  For example, when 3/1=Rz  (Ref. 

Section 19 Example): 
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033
23

=+−− ζζ RRR zzz  [3θ Cubic Equation] 

0)3/1(3)3/1(3)3/1( 23 =+−− ζζ  

01)3/11(27/1 =−−+ ζ  

27/26)27/18( =ζ  

9/13=ζ  

A second, independent Generalized Cubic 

Equation (GCE) for 1=R  and 0=β  can be 

determined as: 

γ

βγζ

+

−−
=

3

4)1(3
Rz  [Ref. Equation 51] 

γ

γ

+

−−
=

3

)0(4)1)(9/13(3
3/1  

)1)(3/13()3)(3/1( −=+ γγ  

13133 −=+ γγ  

γ1216 =  

γ=3/4  

Hence, the two above determined equations can 

be combined in order to be resolved 

simultaneously via the Quadratic Formula, or 

the geometric construction Mapping Process 

presented in Section 2.3, as follows: 

033
23

=+−− ζζ RRR zzz  

ζζ −+= RRR zzz 33
23

 

For 1=α  

023 =+++ δγβα zzz  [Ref. Equation 32] 

023 =+++ δγβ zzz  

Via substitution from above: 

0]33[
22

=+++−+ δγβζζ RRRR zzzz  

0)()3()3(
2

=−++++ ζδγβζ RR zz  

a

acbb
zR

2

42 −±−
=  [Ref. Quadratic Formula] 

)3(2

))(3(4)3()3( 2

βζ

ζδβζγγ

+

−+−+±+−
=Rz  

)03/13(2

])1()[03/13(4)3/13()3/43( 2

+

−+−+−±+−
=

ζβγζ
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)3/13(2

)])(3/13(4)9/169()3/13( βζγ −+±−
=  

3/26

)3/4)(9/13)(3/13(4)9/169()3/13( +±−
=  

3/26

)3/4)(13)(3/13(4169)3/1()3/13( +±−
=  

26

9/)169(1313 +±−
=  

2

3/51±−
=  

3/4;3/1 −=  

Accordingly: 

• From a given angle o
30484647.553 =θ , 

9/13)3tan( == θζ  can be geometrically 

constructed 

• From the synthesis of such two equations, 

a common root 3/1tan == θRz  can be 

geometrically constructed using the 

Quadratic Equation expressed above via the 

mapping process stipulated in Section 2.3 

• From such geometrically constructed length 

of 3/1tan == θRz , an angle θ then can be 

geometrically constructed which is equal 

to 
o43494882.18 , or exactly 1/3 the 

magnitude of such given angle 
o

30484647.553 =θ .  Since such geometric 

construction relies upon the results of an 

algebraic analysis as aforehand knowledge, 

such process does not qualify as a valid 

Euclidean trisection  

Above, notice that it is not necessary to 

extract a cube root in order to algebraically 

determine such solution. 
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2) For β=γγγγ=0: 
An associated analysis begins by examining the 

Generalized Cubic Equation for conditions when 

1=α  as follows: 

023 =+++ δγβα zzz  [Ref. Equation 32] 

)( 23 δγβ ++−= zzz  

3 2 δγβ ++−= zzz  

Notice above that in order to calculate a root 

z, it first becomes necessary to extract the 

cube root of a value which is comprised of 

multiples and mathematical combinations of 

such unknown quantity.   

However, this doesn’t apply when 0== γβ  as 

follows: 

0)0()0( 23 =+++ δzzz  

03 =+ δz  [Ref. Section 13.5] 

Where, 

γ

βδ
ζ

−

−
=

1
 [Ref. Equation 36] 

01

0

−

−
=

δ
 

δ=  

Via substitution: 

0
3

=+ δRz  

0
3

=+ ζRz  

           0)tan( 3 =+ ζθR   

 

When 1=R , the above equation then relates 

θtan  to )3tan( θζ =  where, 

• )3tan( θζ =  is a value which can be 

geometrically constructed from any given 

angle 3θ 

• θtan  is a value from which trisected angle 

θ can be geometrically constructed 

Under such conditions,  

0tan 3 =+ ζθ  

Via further substitution of Equation 3: 
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0
tan31

)tan3(tan
tan

2

2
3 =

−

−
+

θ

θθ
θ  

0
tan31

)tan3(
tan

2

2
2 =

−

−
+

θ

θ
θ  

0tan3)tan31(tan 222 =−+− θθθ  

03tan3 4 =+− θ  

01tan 4 =+− θ  

θ4tan1 =  

θ2tan1 =±  

θtan;1 =± i  

θ=± o45  

θ=oo 315;45  

θ3945;135 =oo
 

θ3225;135 =oo
 

ζ=1m  

Accordingly, 

0tan 3 =+ ζθ  

01tan 3 =mθ  
3 1tan ±=θ  

1tan ±=θ  

Since the cube root of unity is defined as 

unity, an algebraic solution becomes afforded 

without having to extract such cube root. 

This above finding is independently confirmed 

by Equation 51 which applies because 

θθθ tantan)1(tan === RzR  as follows: 

γ

βγζ

+

−−
=

3

4)1(3
Rz  [Ref. Equation 51] 

03

)0(4)10(3

+

−−
=

ζ
 

ζ−=  [Ref. Section 20.1] 
3

Rz=  [Since 0
3

=+ ζRz  above] 
2

1 Rz=  

Taking the square root produces values for zR 

as follows: 
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Rz=1  

Rz=±1  [Ref. Section 20.1] 

θtan=  

θ=± )1arctan(  

θ=oo 135;45  

θ345;135 =oo
 

)3tan(45tan;135tan θ=oo
 

ζ=+− 1;1  

 

Check, 

0
3

=+ ζRz  

01
3

=−Rz  

0113 =−  

011 =−  

00 =  

0
3

=+ ζRz  

01
3

=+Rz  

01)1( 3 =+−  

011 =+−  

00 =  

As such, the two specifically determined 

Generalized Cubic Equations, 1
3

±=Rz , do not 

require cube roots to be geometrically 

constructed because they can be reduced to 

respective Quadratic Equations as demonstrated 

above. 

3) For Circumstances when Generalized Cubic 
Equations exhibit coefficients in prescribed 

ratios:  

By now, it should be realized that conducting 

geometric construction upon any given value of 

)3tan( θζ =  is far different than geometrically 

assessing coefficients which belong to an 

associated Cubic Equation.  Moreover, this 

distinction applies even when such 

coefficients just so happen to be irrational. 

This is because algebraic assessment and 

geometric construction are far different 

entities.  So, it seems fitting that they, 

indeed, are represented by different branches 

of mathematics. 

And so it is that trisection can be 

algebraically determined far more readily from 

given cubic equations than solely from given 

geometric values of )3tan( θζ = ; despite the 

fact that such algebraic solutions cannot 

constitute Euclidean trisections! 
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Algebraic determinations of such types become 

accomplished simply by first interpreting, and 

thereafter geometrically operating upon the 

coefficient structures of given Cubic 

Equations.  

Perhaps the example which is easiest to 

comprehend pertains to a cubic root which, in 

fact, is equal to a fraction of a coefficient 

which appears in a Generalized Cubic Equation. 

For purposes of illustration, for: 

Rz3−=β  

Rz=−
3

β
 

3
0

β
+= Rz  

 

The cube of the above binomial is: 

3)
3

(0
β

+= Rz  

3223
)3/()3/(3)3/(3 βββ +++= RRR zzz  

27/)3/( 3223 βββ +++= RRR zzz  

Such that, 

δγβα +++= zzz 230  [Ref. Equation 32] 

Matching like coefficients renders: 

1=α  

3/2βγ =  

27/3βδ =  

As such, a Generalized Cubic Equation whose 

coefficients appear in the respective 

proportions afforded below contains a root 

equal to 3/β−=Rz : 

027/)3/( 3223
=+++ βββ RRR zzz  

Notice that for this above case, the value of 

the coefficient β can be either rationally-

based, or cubic irrational. 

The geometric construction aspect of this 

analysis becomes rudimentary since it consists 

simply of geometrically dividing any given 

value of β into three equal portions in order 

to determine the value of its associated root 

zR. 
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Moreover, since γγαγβ 3)1(332 === , the 

following equation also applies (Ref. 

Section 13.2): 

α

δαββ
θ

3

27
tan

3 23 −+−
== RzR   

)1(3

)1(273 23 δββ −+−
=  

3

)27/(273 33 βββ −+−
=  

3

3 33 βββ −+−
=  

3

β−
=  

However, in many cases note that 1≠R . 

 

As indicated above, the cube root term always 

adds out to zero when making use of such 

Generalized Cubic Equation format. 

Check,  

θ

θθ
ζθ

2

3

tan31

tantan3
)3tan(

−

−
==  [Ref. Equation 3] 

2

2

31

)3(

R

RR

z

zz

−

−
=  

2

2

)
3

(31

])
3

(3[
3

β

ββ

−−

−−−
=  

)
3

(1

)
9

3(
3

2

2

β

ββ

−

−−
=  

)
3

(1

27
2

3

β

β
β

−

−
=  

γ

βδ

−

−
=

1
 [Ref. Equation 36] 

Hence, by comparing like aspects of the above 

two equations: 
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023 =+++ δγβα zzz  [Ref. Equation 32] 

027/)3/( 3223
=+++ βββ RRR zzz  Q.E.D.  

Unfortunately, this above analysis represents 

little more than determining equations for any 

prescribed root zR whose coefficient β can be 

acted upon via geometric construction for 

purposes of again identifying or producing 

such given root. 

Three other Cubic Equations of the above 

format are determined below through a 

simplified process.  One exhibits a rational 

cubic root, another contains a cubic root 

comprised of a square root quantity that can 

be geometrically constructed via the mapping 

process specified in Section 2.3, and another 

expresses an cubic irrational cubic root as 

follows: 

For 

5/1tan == θRz  

Rz3−=β  

5/3−=  

3/2βγ =  

25/3=  

27/3βδ =  

9/γβ=  

125/1−=  

For 

73tan +== θRz  

Rz3−=β  

)73(3 +−=  

3/2βγ =  

)7616(3 +=  

27/3βδ =  

9/γβ=  

)73490(1 +−=  

For 

363970234.020tantan === o

Rz θ  

Rz3−=β  

091910703.1−=  

3/2βγ =  

397422994.0=  

27/3βδ =  

9/γβ=  

048216713.0−=  

Check, 

0
125

1
)

25

3
(

5

3 23 =−+− zzz  

0
125

1
)

5

1
)(

25

3
()

5

1
(

5

3
)

5

1
( 23 =−+−  

01331 =−+−  

00 =  

 

0)73490()7616(3)73(3 23 =+−+++− zzz  

0)73490()73)(7616(3)73)(73(3)73( 23 =+−+++++−+  

0)73490()73)(7616(3)7616)(73(3)776372727( =+−+++++−+++  

0)73490()7616)(73)(33()73490( =+−++−++  
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0)73490()73490( =+−+  

00 =  

0048216713.0397422994.0091910703.1 23 =−+− zzz  

0048216713.0)363970234.0(397422994.0)363970234.0(091910703.1)363970234.0( 23 =−+−  

0048216713.014465014.014465014.0048216713.0 =−+−  

00 =  

From these above determined Cubic Equations, 

roots may be determined linearly via the 

expression posed in Equation 51 as follows: 

For 0
125

1
)

25

3
(

5

3 23 =−+− zzz  

Where, 

γ

βδ
ζ

−

−
=

1
 [Ref. Equation 36] 

)
5

5
(

25

3

125

125

)
25

25
(

5

3

125

1

−

+−
=  

110

74
=  

γ

βγζ

+

−−
=

3

4)1(3
Rz [Ref. Equation 

51] 

)
5

5
(

25

3
)

125

125
(3

)
25

25
)(

5

3
(4)]

125

125
()

5

5
(

25

3
)[

110

74
(3

+

−−−
=  

15375

300)110)(
110

74
(3

+

+−
=  

390

78
=  

5

1
=  Q.E.D. 

For 0)73490()7616(3)73(3 23 =+−+++− zzz  

Where, 

γ

βδ
ζ

−

−
=

1
 [Ref. Equation 36] 
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)7616(31

)73(3)73490(

+−

+++−
=  

          
71847

73181

+

+
=  

 

γ

βγζ

+

−−
=

3

4)1(3
Rz [Ref. Equation 51] 

)7616(33

)73(12]1)7616(3)[
71847

73181
(3

++

++−+
+

+

=  

71851

71236)71847)(
71847

793243
(

+

+++
+

+

=  

71851

7105279

+

+
=  

71851

)71851)(73(

+

++
=  

73 +=  Q.E.D. 

For  

0048216713.0397422994.0091910703.1 23 =−+− zzz  

Where, 

γ

βδ
ζ

−

−
=

1
 [Ref. Equation 36] 

397422994.01

091910703.1048216713.0

−

+−
=  

3=  
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γ

βγζ

+

−−
=

3

4)1(3
Rz [Ref. Equation 51] 

397422994.03

)091910703.1(4)1397422994.0(33

+

+−
=  

397422994.3

367642811.4)602577005.0(33 +−
=  

397422994.3

367642811.4131081968.3 +−
=  

397422994.3

236560843.1
=  

363970234.0=  Q.E.D. 

 

4) For Applications of the Trisector Equation 
Generator: 

Naturally it is of far greater interest to 

derive an algorithm which instead determines 

equation types from given, or known values of 

)3tan( θζ =  where their associated cube root 

terms also add out to zero. 

This is accomplished as follows, where: 

θθθ tantan)1(tan === RzR  

0
23

=+++ δγβα RRR zzz  [Ref. Equation 32] 

0tantantan)1( 23 =+++ δθγθβθ              (for α=1) 

Such that, 

γ

βδ
ζ

−

−
=

1
 [Ref. Equation 36] 

δβγζ =+− )1(   

δβ
β

ζ =+− )
3

1(
2

           (for 3/2βγ = )        

Substitution into what appears below gives: 

0tantantan 23 =+++ δθγθβθ  

0=]β+)
3
β

-1(ζ[+θtan)
3
β

(+θtanβ+θtan
22

23  

0tan)tan1()(tan
3

32
2

=++++− ζθθβζθ
β

 

0
)(tan

tan
)3(]

)(tan

)tan1(3
[

32
2 =

−

+
+

−

+
+

ζθ

ζθ
β

ζθ

θ
β  

Completing the square gives: 
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2

423
2

22
2

)(tan4

)tantan21(9

)(tan

tan
)3(]

)(tan2

)tan1(3
[]

)(tan

)tan1(3
[

ζθ

θθ

ζθ

ζθ

ζθ

θ
β

ζθ

θ
β

−

++
=

−

+
+

−

+
+

−

+
+  

2

423
2

2

)(tan4

)tantan21(9
)

tan

tan
)(

4

4
(

)(tan

tan
)3(]

)(tan2

)tan1(3
[

ζθ

θθ

ζθ

ζθ

ζθ

ζθ

ζθ

θ
β

−

++
=

−

−

−

+
+

−

+
+  

Whereby, 

)
tan

tan
)(

4

4
(

)(tan

tan
)3(

)(tan4

)tantan21(9
]

)(tan2

)tan1(3
[

3

2

42
2

2

ζθ

ζθ

ζθ

ζθ

ζθ

θθ

ζθ

θ
β

−

−

−

+
−

−

++
=

−

+
+  

)ζ-θ)(tanζ+θ(tan21-)θtan+θtan2+1(9]
)ζ-θ(tan2

1
[=

)ζ-θ(tan2
)θtan+1(3

+β 342
2

 

]tantan(tan12)tantan21(9)tan1(3][
)(tan2

1
[ 234422 ζθζθζθθθθ

ζθ
β −+−−++±+−

−
=  

Equation 52.  Trisector Equation Generator for zR=-β/3. 

]tan3tan12tan18tan12129)tan1(3][
)(tan2

1
[ 43222 θθζθθζζθ

ζθ
β −++−+±+−

−
=  

Therefore, for any postulated real value of 

)3tan( θζ =  and its associated, calculated value 

θθθ tantan)1(tan === RzR , the coefficients β, ,3/β=γ 2  

and β+)
3
β

-1(ζ=δ
2

 can be calculated in order to 

describe a Generalized Cubic Equation whose root 

is 3/β−=Rz . 

For the case when: 

9/13)3tan( == θζ  
o30484647.553 =θ  

o43494882.18=θ  

3/1tan == θRz  

Then, by applying Equation 52: 

]tan3tan12tan18tan12129)tan1(3][
)(tan2

1
[ 43222 θθζθθζζθ

ζθ
β −++−+±+−

−
=  

]81/381/5281/16281/46881/)2028729()9/10(3][
)9/10(2

1
[ −++−+±−

−
=  

]352162468)2028729(
9

1

9

30
][

20

9
[ −++−+±−
−

=  

]49162468275730][
20

1
[ ++−±−
−

=  

2500
20

1

2

3
m=  

2

53 m
=  

4;1 +−=  
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3

2β
γ =  

3

16
;

3

1
=  

 

βγζδ +−= )1(  

4)
3

16
1(

9

13
;1)

3

1
1(

9

13
+−−−=  

)
27

27
(4)

3

13
(

9

13
;

27

27
)

3

2
(

9

13
+−−=  

27
61

-;
27
1

=  

Hence, such above determined coefficients 

generate the following pair of Generalized 

Cubic Equations: 

023 =+++ δγβα zzz  [Ref. Equation 32] 

0
27

1

3

123 =−+− zzz  

0
27

61

3

16
4 23 =−++ zzz   

Check, 

For 

0
27

1

3

123 =−+− zzz  

γ

βγζ

+

−−
=

3

4)1(3
Rz [Ref. Equation 51] 

)
3

3
(

3

1
)

9

9
(3

)
9

9
)(1(4)]

3

3
(1

3

1
)[

9

13
(3

+

−−−
=  

9

3

9

27

)
9

36
()

3

2
)(

3

13
(

+

+
−

=  

30

10
=  

3

1
=  

For  

0
27

61

3

16
4 23 =−++ zzz  

γ

βγζ

+

−−
=

3

4)1(3
Rz  

)
3

3
(

3

16
)

9

9
(3

)
9

9
)(4(4)]

3

3
(1

3

16
)[

9

13
(3

+

−−
=  

9

4827

)
9

9
)(4(4)

3

13
)(

3

13
(

+

−
=  

75

25
=  

3

1
=  
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Also: 

αγβ 32 =  

)3/1)(1(3=  

1±=β  

12 −=β  

αγβ 32 =  

)3/16)(1(3=  

16±=β  

41 +=β  

So, 

α

δαββ

3

273 23

22 −+−
=Rz  

3

)
27

1
()1(27)1(1 3

23 −+−−++

=  

3

111 3 +−++
=  

3

01+
=  

3

1
=  

α

δαββ

3

273 23

11 −+−
=Rz

3

)
27

61
()1(27)4(4 3

23 −−+−

=  

3

1254 3+−
=  

3

54 +−
=  

3

1
=  

 

027/1)3/1(23 =−+− zzz  

0
27

1
)

3

3
)(

3

1
(

3

1
)

3

3
()

3

1
()

3

1
( 23 =−+−  

027/)1331( =−+−  

00 =  

0
27

61

3

16
4 23 =−++ zzz  

0
27

61
)

3

3
)(

3

1
(

3

16
)

3

3
()

3

1
(4)

3

1
( 23 =−++  

0
27

6148121
=

−++
 

00 =  
Now with regard to these newly determined 

equations, The common root 3/1=Rz  for the 

first given Cubic Equation above can be 

geometrically constructed without having to 

take a cube root since such cube root term 

adds out to zero. 

 

Moreover, such first given Cubic Equation, as 

cited above, contains 3/3/1 β−==Rz  as a root; 

thereby represents the tangent of the 
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trisected angle θ, the latter of which then 

could be geometrically constructed very 

easily. 

With regards to the second above given Cubic 

Equation, 027/61)3/16(4 23 =−++ zzz , its 

associated root zR can be geometrically 

constructed from its given coefficients via 

application of Equation 51, as shown above.  

Hence, in this particular case, it also is not 

necessary to obtain a cube root via geometric 

construction. 

For such two given Cubic Equations, as are 

represented above, the following proof is 

provided in order to demonstrate that each 

relate to the same angle o
30484647.553 =θ : 

For 

0
27

1

3

123 =−+− zzz  

γ

βδ
ζ

−

−
=

1
[Ref. Equation 36] 

)
9

9
(

3

1
)

27

27
(1

)
27

27
)(1(

27

1

−

−−−
=  

927

271

−

+−
=  

18/26=  

9/13)3tan( =θ  
o30484647.553 =θ  

For  

0
27

61

3

16
4 23 =−++ zzz  

γ

βδ
ζ

−

−
=

1
 

)
9

9
(

3

16
)

27

27
(1

)
27

27
)(4(

27

61

−

−−
=  

14427

10861

−

−−
=  

117/169 −−=  

9/13)3tan( =θ  
o30484647.553 =θ  

Therefore, a given angle of 
o30484647.553 =θ  can 

be divided into three equal angles of 
oo 43494882.183/30484647.55 ==θ  each by means of a 

geometric construction which utilizes nothing 

more than a straightedge and compass when 

applying the coefficients and respective 

formats expressed in either of the above 

determined Cubic Equations. 
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In conclusion,  Generalized Cubic Equation formats exhibiting 

a sub-element of 1=R  contain a root of θtan=Rz  with respect 

to their characteristic values of )3tan( θζ =  such that, 

γ

βδ
ζ

−

−
=

1
 [Ref. Equation 36] 

Such values zR and ζ can be determined by a geometric 

construction which employs only straightedge and compass 

instruments that operate solely upon various inherent 

coefficients resident within these formats. 

Since an angle of 3θ can be geometrically constructed from a 

given value of )3tan( θζ = , and since an angle of θ also can be 

geometrically constructed from such previously algebraically 

determined value of θtan=Rz , trisection can be achieved 

through geometric manipulation of such inherent coefficients. 

This does not constitute a bonafide Euclidean Trisection 

event, however, since such Generalized Cubic Equation formats 

exist merely as algebraic transformations that constitute 

aforehand knowledge of such desirable root structures in the 

first place (Ref. Section 19). 
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SECTION 22 

(In the event of any conflict between this section and U.S. Patent No. 10994569 issued on 

5/4/2021, the latter governs) 

Astounding as it might sound, cubic irrational lengths 

actually can be depicted from any arbitrarily assigned or 

given length of unity without having to defy or otherwise 

violate the conclusion expressed in Section 9.1.  

This is achieved by a process whereby cubic irrational lengths 

become geometrically formed instead of geometrically 

constructed!  

Such process furthermore enables trisected angles, 

respectively equal to exactly one-third the magnitude of any 

given angles, now also to become portrayed. 

With respect to the above, the prospect of identifying cubic 

irrational lengths is considered to be of far greater 

importance than actually trisecting various ascribed angles of 

3θ. 
This is because the concept of depicting exact cubic irrational 

lengths alongside an amalgamation of rationally-based lengths 

that actually define them should exemplify a fitting or 

fundamentally new Number Theory groundwork, in itself, from which 

to launch amazing new discovery; and thereby, further advance the 

overall state-of-the-art! 

 

In contrast, trisecting an angle from a given angle 3θ, although 
of significant import, nevertheless does not appear to possess 

the same profound capability to stand alone as an actual 

groundwork in itself, from which to derive other meaningful 

applications. 

Section 22.1 indicates that geometrically formed cubic 

irrational lengths become evident during overlapment, a 

singular condition observed to occur whenever the longitudinal 

axis of a pre-selected compass arm (belonging to a new 

appurtenance consisting solely of compass and straightedges 

interconnected in a unique manner) hovers directly over the 

determinable point (η,τ). 

Cubic irrational lengths result because geometric constraint 

becomes imposed upon the endpoint of the other compass arm. 

Setting all compass arm and straightedge lengths equal to an 

arbitrary value of unity assures that resulting cubic 

irrational lengths can become depicted directly alongside such 

rational unitary basis.  
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Section 22.2 stigmatizes Euclidean practice as being somewhat 

incomplete, primarily because it lacks the capability to 

geometrically construct cubic irrational lengths. 

In order to remedy this inadequacy, an examination of 

intersection points that occur at various locations along 

straight lines, rather than only at their terminations, or 

endpoints was undertaken. 

This surfaced additional intersection points not normally 

encountered during generally accepted Euclidean practice. 

Why such investigations were not conducted earlier, say by 

Euclid and his crew, is subject to controversy; but two 

possibilities exist which may be attributed to either: 

a) Oversight:  Whereby such intersection points were 
overlooked; that is, they simply went undetected along the 

way; or 

b) Mathematical indifference:  Whereby such intersection 
points were deliberately ignored during prior exercises 

because identifying midway locations in such manner then 

might have been considered to be outside the scope of the 

very rules, regulations, and interpretations which govern 

geometric construction via Euclidean compass and 

straightedge tools. 

In either event, generally accepted Euclidean practice 

presently remains limited in that it can geometrically 

construct only rationally-based lengths. 

Had Euclid and his contemporaries been advised that cubic 

irrational lengths actually could be depicted solely from a 

unique arrangement of compasses interconnected via 

straightedge, such capability most definitely would have been 

incorporated into their practice long ago.  

Section 22.3 highlights various aspects of what is, and what 

should be acknowledged to be, generally accepted Euclidean 

practice as follows:  

• Section 22.3.1 affords examples of relative motion 

evidenced within generally accepted Euclidean practice. 

• Section 22.3.2 gives an example of an imposition of 

geometric constraint exhibited by the generally accepted 

Euclidean practice of tightening a compass hinge  

• Section 22.3.3 asserts that because intersection points 

can be determined via geometric construction, overlapment 

should be categorized under the Euclidean umbrella since 

it too locates intersection points.    
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The only difference is that overlapment seeks to identify 

additional intersection points that previously were not 

determined by geometric construction. 

From the distant vantage point of Earth, such distinct 

longitudinal axis (previously mentioned in connection with 

overlapment), once contemplated to exist outside of the realm 

of such aforementioned appurtenance (Ref. Section 22.1), may 

be perceived as a straight line of seemingly imperceptible 

width which becomes drawn, for example, through Orien’s Belt.  

At the precise moment when it is observed to pass either 

directly in front of or behind a particular star, no matter 

how faint, overlapment occurs at the specific location where 

such straight line is viewed to cross, or intersect with the 

star. 

Such process also may be likened to a total eclipse of the 

sun by the moon.  During this occurrence, a straight line 

fictitiously can be drawn which is considered to intersect: 

• The center of the moon  

• The center of the sun 

• The midway point between the viewer’s eyes 

Hence, overlapment coexists with intersection.  They go 

hand-in-hand, whereby at times they even might be 

perceived as being inextricably linked or associated to 

one another.  

Section 22.4 recommends that generally accepted Euclidean 

practice becomes amended in order to hereby include the 

following stipulation: 

The prospect of incorporating cubic irrational length depictions 

into formerly established Euclidean practice without violating, 

detracting from, or otherwise conflicting with its precepts 

theoretically would entail: 

• Using only Euclidean compass and straightedge instruments in 

a manner entirely consistent with all of the rules and 

regulations applied during Euclid’s day 

• Treating cubic irrational length geometrically formed 

depiction in exactly the same manner as rationally-based 

geometric construction; whereby both become determinable 

entirely from a given length of unity (Ref. Section 9.1) 

� Acknowledging the process of obtaining geometrically formed 

depictions as a new Euclidean enhancement; one which remains 

completely independent, or is distinguished entirely apart 

from the presently accepted Euclidean process of geometric 

construction  

By recognizing overlapment, geometry then would become complete; 

thereby identifying all possible intersection points associated 

with a given length of unity (Ref. Section. 9.1 Conclusion). 

It also then would enable exact depictions of both rationally-

based and cubic irrational lengths alongside one another!  
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Section 22.5 presents the associated theory which enables 

cubic irrational length depictions, recapped as follows: 
Cubic irrational numbers are known to manifest themselves as 

cubic root values zR, zS, and zT inherent within 3θ Cubic 

Equations. 

In consonance with the Cubic Equation Cubic irrational Root 

Uniqueness Theorem, this may be interpreted to mean (Ref. Section 

9.3): 

When a 3θ Cubic Equation, of the particular form designated 

below, possesses a rationally-based coefficient of )3tan( θζ = , 

its roots nevertheless still may be cubic irrational. 

 033 23 =+−− ζζ zzz  

During such circumstances, a mutual existence between equation 

rationally-based coefficients and associated cubic irrational 

roots presumably occurs. 

Table 35 charts examples of cubic irrational lengths stemming 

from the 3θ Cubic Equation for the two specific conditions when: 

1) 3)3tan( == θζ ; and  

2) 57)8/3()3tan( == θζ .   

Table 35 relates how cubic irrational root length values 

ascertained from such specific rationally-based values become 

commissioned as actual ζ values in themselves, in order to 
perpetuate numerical length determinations.   

Quite obviously, other trigonometric depictions besides those 

specified in Error! Reference source not found. can be determined 

as offshoots to such tangent determinations -- including both 

sine and cosine portrayals. 

Even though all cubic irrational lengths (such as the value for 

79...462643383235897932383.14159265=π ) quite possibly cannot yet 

directly be ascertained via this above process, nevertheless it 

still significantly and sufficiently contributes to the overall 

advancement of Number Theory, simply because it now equips 

humanity with a brand new, profound capability to actually depict 

cubic irrational numbers geometrically (Ref. Related Problem 

Number 48)! 
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Section 22.6 introduces Atacins, a novel invention with 

capability to depict a geometrically formed angle exactly one-

third the magnitude of any given angle that becomes programmed 

into it. 

Even when the tangent of such resulting angle is a cubic 

irrational length, Atacins depicts it.  Atacins is an acronym 

for angle trisector and cubic irrational length instrument, 

whereby a motion must be imparted during such determinations. 

The device overcomes the rational number to cubic irrational 

number quandary normally experienced during prior attempts at 

Euclidean trisection. 

This is achieved by articulating such invention until 

overlapment, as described above, occurs; whereby, cubic 

irrational lengths become depicted alongside given rationally-

based ones. 

• Section 22.6.1 indicates that such articulation, compass 

endpoint A’ is to be constrained within the slot 

arrangement appearing in compass arm OA  , thereby 

permitting it to ride only in the horizontal direction, or 

actuate only along the x-axis (Ref. Figure 51).  

Atacins features straightedge member '  OO  whose endpoints 

interconnect to two hinges which belong to compasses OAB 

and O’A’B’, respectively (Ref. Figure 51).  

Therein, members AB    and ''  BA   extended have been inserted 

only to replace the tightening capabilities of such 

respective compass hinges.  Such modification simplifies 

the operation of the device, but is not mandatory. 

Accordingly, Atacins consists of two hinges which attach 

the endpoints of a middle straightedge to respective 

assemblies of swinging arms which collectively may be 

actuated as independent compasses. 

Specifically, Atacins is a mechanism that consists of a 

middle straightedge member that interconnects with two 

independent assemblies comprised of identically shaped 

isosceles triangles.  Moreover, the assigned length of such 

middle straightedge is equal to that applied to each equal 

side of both isosceles triangles. 

� A detail for such identically shaped isosceles 

triangles appears in Figure 50 

� An embodiment of the device is presented in Figure 51 

For each isosceles triangle, enclosed angles located adjacent 

to such middle straightedge member are to be adjusted to a 

known or given angle o)3-09( θ .   
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• Section 22.6.2 contributes an overall proof which 

validates that trisection becomes achieved for any and all 

magnitudes of o)3-09( θ   

• Section 22.6.3 presents two alternate Atacins 

configurations as follows:  

� The first replaces two existing arms with one new 

member (Ref. Section 22.6.3.1) 

� The second performs as an intricate parallelogram 

(Ref. Section 22.6.3.2) 

� The third (Ref. Figures 32-59) operates in much the 

same way as would a car jack (Ref. Section 22.6.3.3) 

• Section 22.6.4 states that Atacins depicts exact cubic 

irrational lengths, characterized by decimal sequences 

which are considered to continue on indefinitely, instead 

of repeating themselves. 

Such capability renders former approximation techniques, 

like the one described below, obsolete: 

Dividing up a given length of unity into ten equal portions 

(Ref. Error! Reference source not found.), and then into 

hundredths (Ref. Error! Reference source not found.), and so 

on, until such desired cubic irrational length becomes amply 

gauged via ruler. 

 

Section 22.7 is a summary for the entire section.  It 

mentions that Atacins: 

• Enhances upon the uncontrolled movement allowed in former 

Archimedes geometric renderings by launching actuations 

exclusively from completely identifiable locations.  No guess 

work is required! 

• Depicts rationally-based lengths directly alongside associated 

cubic irrational root lengths. 

Relates rationally-based coefficients to cubic irrational 

root counterparts.   

• Enables the trisector of any given angle to be geometrically 

formed simply by applying the following two step process (Ref. 

Figure 51): 

1) Set angles AOB and A’O’B’ to predetermined angles of 90-3θ 
degrees each; 

2) Then articulate, or flex the invention until such time 

that the longitudinal axis of member ''  BO  overlaps point B. 

The trisected angle OO’C thereafter becomes easily 

identified by bisecting the geometrically formed angle 

OO’A’ either by use of added pencil/paper or via ruler. 
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There is no need to change the wording of the conclusion to 

Section 9.1 because of the logic presented below: 

• Rationally-based numbers comprise all real numbers which 

can be geometrically constructed from a given, arbitrary 

length of unity 

• Cubic irrational numbers comprise all other real 

numbers; specifically, those which cannot be 

geometrically constructed from a given, arbitrary length 

of unity – which includes all those which can be 

geometrically formed from a given, arbitrary length of 

unity 

SECTION 23 

This final portion of the treatise delves into wave 

propagation. 

Wave fronts can be depicted as curve snapshots over time.  

That is to say, as waves move, different curves can map them.  

The benefit of Equation Sub-element Theory is that it avails 

families of curves which, at times, can trace such 

propagation.  Figure 60 gives an example of this such that: 

The moving wave portrayed at time t = 0 in Figure 60 changes 

shape as it travels through a medium.  For this particular wave, 

points A and B remain stationary as the wave disintegrates from 

time t= 0 to time t = t2. However, node O located in the middle 

of the symmetrical wave travels through point O’ to a location of 

O’’ at time t = t2.  This presents an indication either that: 

• Weaker resisting wave forces are at play at the vertical 

plane that node O passes through as it moves from Node O’ to 

Node O’’ than those tending to resist points A and B from 

propagating during this same time period, or 

• Weaker applied thermodynamic forces reside at endpoints A and 

B of the moving wave than at its apex, or 

• Any combination thereof 

The term plane mentioned above applies to the fact that moving 

waves, such as that represented in Figure 60, assume three 

dimensional shapes in the real world.  Their respective cross 

sections may be circular, elliptical, or any other variation that 

conceptually may be modeled over time. Furthermore, such cross 

sections may change shape affording additional provision in which 

to characterize the forces at work. 

Another example of wave propagation is afforded which pertains 

to football players as they run a play. Such analysis comes 

complete with accompanying animations. 
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SECTION 24 

Therein, various problems are analyzed.  They are presented in 

the same sequence as theory is rendered in the body of 

treatise; thereby allowing for easy cross-referencing.  


